OCEAN PARK SUBDIVISION VIRGINIA BEACH, VIRGINIA

PROJECT NARRATIVE AND CALCULATIONS

JULY 3, 2025

PREPARED FOR:

MCLESKEY & ASSOCIATES
2859 VIRGINIA BEACH BOULEVARD #106
VIRGINIA BEACH, VIRGINIA 23452

PREPARED BY:

2901 S Lynnhaven Road, Suite 200 Virginia Beach, Virginia 23452 Phone: 757.213.6679 www.timmons.com

Table of Contents

Project Description	1
Existing Site Conditions	1
Adjacent and Offsite Areas	1
Soils	1
Critical Areas	2
Permitting	2
Erosion and Sediment Control	2
Structural Practices	2
Vegetative Practices	3
Management Strategies	3
Maintenance	5
Virginia Department of Environmental Quality Minimum Standards	5
Permanent Stabilization	5
Construction Sequence	6
Stormwater Management	7
Existing Conditions	7
Proposed Conditions	7
Stormwater Quality	8
Utilities	8
Water	8
Sewer	9
Appendix A – Soil Maps and Geotechnical Report	A
Appendix B – Erosion and Sediment Control Calculations	B
Appendix C – Stormwater Management Calculations	C
Appendix D – Utility Calculations	D
Appendix E – Pavement Design	E

Project Description

This project proposes the development of 14 duplexes for a new residential subdivision on Marlin Bay Drive west of Winston Place. The property GPIN is 1489-47-6808-000 and zoned PD-H1.

The proposed development includes a public roadway with a cul-de-sac. Water, sanitary sewer, and stormwater will connect to existing facilities. During this development, the existing property lot lines will be modified to provide an extension of the Marlin Bay Drive public right of way.

Proposed land disturbance is approximately 3.13 acres.

Existing Site Conditions

The existing site conditions contain forested area, a public gravel trail, and neighboring roadways.

Adjacent and Offsite Areas

The site is bounded by Winston place to the east; R5 residential properties to the north; Marlin Bay to the west; and P1-preservation area to the south.

Soils

According to the "Web Soil Survey" provided by United States Department of Agriculture (USDA) the existing site has the following soil characteristics:

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
10	Corolla fine sand	A	1.7	56.3%
30	Psamments	A	1.4	43.7%
Totals for Area of Interest			3.1	100.0%

A geotechnical engineering report was prepared by ECS Mid Atlantic, LLC, dated November 23, 2022 with hand auger samples certified by a professional geologist with Fishburne Drilling Inc. dated November 10, 2022. Groundwater was encountered at depth 4 to 7 feet below existing grades at the time of drilling. Based on the stabilized groundwater depth recorded, an estimate of the seasonal high groundwater table is provided below:

	Estimated Gr	Estimated Groundwater Levels (ft, NAVD 88)			
	INF-01/B-01	INF-02/B-02	INF-03/B-03	INF-04/B-04	
Approx. Elev. at Test Site	7.5	7.1	5.5	4.5	
Certified SHGWT Depth	6	6	4	3	
Estimated SHGWT Elevation	1.5	1.1	1.5	1.5	

The USDA NRCS Web Soil Survey Maps can be found in Appendix A.

Critical Areas

The site is located in the AE el.7 flood zone.

Permitting

This project will require a Land Disturbance Permit and VSMP (Virginia Stormwater Management Program) Permit prior to the start of any land disturbing activities. The contractor is responsible for obtaining all necessary permits.

Erosion and Sediment Control

Unless otherwise indicated, all vegetative and structural erosion and sediment control practices shall be constructed and maintained in accordance to the minimum standards and specifications of the Virginia Stormwater Management Handbook (VSMH) v1.1. The minimum standards of the VSMH regulations shall be adhered to unless otherwise waived or approved by a variance. The erosion and sediment control measures as shown on the plan set are sufficient and meet the VSMH design criteria.

Structural Practices

1. Construction Entrance: (C-SCM-03)

Temporary stone construction entrances will be installed at the entrances to the site along Salem Road where the access area intersects with existing paved roadways to avoid transporting mud and sediment onto existing paved roads.

2. Silt Fence: (C-PCM-04)

Temporary silt fence sediment barriers will be installed around the perimeter of the site's disturbed areas to prevent sediment laden runoff from leaving the site.

3. Storm Drain Inlet Protection: (C-SCM-04)

All new and existing downstream storm drain inlets shall be protected from sediment laden runoff during construction.

4. Temporary Diversion Dike: (C-ECM-04)

Temporary diversion dikes will be used to divert storm runoff away from sensitive areas (wetlands) or from upstream areas into sediment basins or traps.

5. Temporary Diversion: (C-ECM-05)

Temporary diversion swales and ditches will be installed as shown on the Phase I Erosion and Sediment Control Plans to convey runoff to a proposed sediment control measure.

6. Temporary Sediment Trap: (C-SCM-11)

A temporary sediment trap will be formed by constructing an earthen embankment with a stone outlet. Sediment-laden water will be detained in the sediment trap long enough to allow the majority of the sediment to settle out.

7. Outlet Protection: (C-ECM-15)

Outlet protection will be installed at all pipe outlets and concentrated flow outlets to prevent scour and to minimize downstream erosion.

Vegetative Practices

8. Surface Roughening: (C-SSM-03)

Surface roughening shall be implemented for all cut and fill slopes 4H:1V or greater prior to the placement of the next lift of fill, all cut and fill slopes 4H:1V or greater prior to seeding, and areas which have been graded and not stabilized immediately.

9. Temporary Seeding: (C-SSM-09)

All denuded areas which will be left dormant for extended periods of time shall be seeded with fast germinating temporary vegetation immediately following grading activities. Selection of the seed mixture will depend on the time of year it is applied.

10. Permanent Seeding: (C-SSM-10)

Permanent seeding will be established on all non-paved disturbed areas.

11. <u>Mulching:</u> (C-SSM-11)

Mulch will be applied to all seeded areas to prevent erosion and foster the growth of vegetation.

12. Soil Stabilization Blankets and Matting: (C-SSM-05)

Soil stabilization blankets and matting will be installed to aid in controlling erosion on critical areas of a steep slope.

13. Tree Preservation and Protection: (C-SSM-01)

All trees that are to be saved will be protected with tree protection during construction.

14. Dust Control: (C-SCM-01)

Areas subject to surface and air movement of dust shall be stabilized during construction to minimize dust release. Methods include but are not limited to vegetative cover, mulch, or irrigation.

Management Strategies

The following sequence of events and erosion control measures shall be incorporated into the construction schedule for this project and shall apply to all construction activities within the project limits.

1. Soil Stabilization:

- a. Permanent or temporary soil stabilization shall be applied to denuded areas within seven days after final grade is reached on any portion of the site.
- b. Temporary soil stabilization shall be applied within seven days to denuded areas that may not be at final grade but will remain dormant for longer than 30 days, but less than one year.
- c. Permanent stabilization shall be applied to areas that are to be left dormant for more than one year.

- 2. <u>Soil Stockpile Stabilization</u>: During construction, soil stockpiles and borrow areas shall be stabilized or protected with sediment trapping measures. Temporary protection and permanent stabilization shall be applied to all soil stockpiles on site and borrow areas or soil intentionally transferred off site.
- 3. <u>Permanent Stabilization</u>: Permanent vegetative cover shall be established on denuded areas not otherwise permanently stabilized. Permanent vegetation shall not be considered established until a ground cover is achieved that is:
 - Uniform
 - Mature enough to survive
 - Will inhibit erosion
- 4. <u>Cut and Fill Slopes Design & Construction</u>: Cut and fill slopes shall be designed and constructed in a manner that will minimize erosion. Slopes found to be eroding excessively within one year of permanent stabilization shall be provided with additional slope stabilizing measures until the problem is corrected.
- 5. <u>Concentrated Runoff Down Slopes</u>: Concentrated runoff shall not flow down cut or fill slopes unless contained within an adequate temporary or permanent channel, flume, or slope drain structure.
- 6. <u>Slope Maintenance</u>: Whenever water seeps from a slope face, adequate drainage or other protection shall be provided.
- 7. Storm Sewer Inlet Protection: All storm sewer inlets made operable during construction shall be protected so that sediment-laden water cannot enter the stormwater conveyance system without first being filtered/treated to remove sediment.
- 8. <u>Stormwater Conveyance Protection</u>: Before newly constructed stormwater conveyance channels or pipes are made operational, adequate outlet protection and any required temporary or permanent channel lining shall be installed in both the conveyance channel and the receiving channel.
- 9. <u>Underground Utility Line Installation</u>: Underground utility lines shall be installed in accordance with the following standards in addition to other applicable criteria:
 - a. No more than 500 linear feet of trench may be opened at one time
 - b. Excavated material shall be placed on the uphill side of trenches
 - c. Effluent from dewatering operations shall be filtered or passed through an approved sediment trapping device, or both, and discharged in a manner that does not adversely affect flowing streams or off-site property
 - d. Material used for backfilling trenches shall be properly compacted in order to minimize erosion and promote stabilization
 - e. Restabilization shall be accomplished in accordance with these regulations
 - f. Comply with applicable safety regulations
- 10. <u>Vehicular Sediment Tracking</u>: Where construction vehicle access routes intersect paved or public roads:
 - a. Provisions shall be made to minimize the transport of sediment by vehicular tracking onto the paved surface
 - b. Where sediment is transported onto a paved or public road surface, the road surface shall be cleaned thoroughly at the end of each day
 - c. Sediment shall be removed from the roads by shoveling or sweeping and transported to a sediment control disposal area. Street washing shall be allowed only after sediment is removed in this manner

11. Removal of Temporary Measures: All temporary erosion and sediment control measures shall be removed within 30 days after final site stabilization or after the temporary measures are no longer needed, unless otherwise authorized by the program authority. Trapped sediment and the disturbed soil areas resulting from the disposition of temporary measures shall be permanently stabilized to prevent further erosion and sedimentation.

Maintenance

In general, all erosion and sediment control measures shall be checked after each rainfall or weekly, whichever is most frequent, and should be cleaned and repaired according to the following schedule.

- 1. Construction entrance shall be maintained in a condition which will prevent tracking or flow of mud onto paved surfaces and public rights-of-way. Maintain construction entrances in accordance with C-SCM-03 of the VSMH.
- 2. Silt fences shall be inspected after each rainfall and repaired immediately, as required. Maintain silt fence in accordance with C-PCM-04 of the VSMH.
- 3. The inlet protection will be checked regularly for sediment cleanout. Maintain inlet protection in accordance with C-SCM-04 of the VSMH.
- 4. Outlet protection shall be checked regularly and shall be cleaned and/or replaced if excessive sediment buildup is present.
- 5. Erosion and sediment control measures shall be checked regularly for undermining or deterioration and buildup or clogging with sediment. Corrective action shall be taken immediately.
- 6. Temporary sediment basin and temporary sediment traps shall be cleaned to remove sediment buildup when sediment accumulation reaches the elevation shown on the Erosion and Sediment Control Plans. Maintain temporary outfall to ensure proper sediment filtration and trash interception.
- 7. All seeded areas will be checked regularly to see that a good stand is maintained. Areas should be fertilized and reseeded as needed.
- 8. All temporary erosion and sediment measures shall be disposed of within thirty (30) days after final site stabilization is achieved and vegetation is established. Final site stabilization shall be approved by the City Inspector.

Virginia Department of Environmental Quality Minimum Standards

The design of this development shall conform to the minimum standards and specifications of the Virginia Stormwater Management Handbook (VSMP). Included in the Civil Site Plans is the Virginia Department of Environmental Quality (DEQ) checklist for compliance (MS-1 thru MS-19 Checklist). Information is provided in the Civil Site Plans as to how each applicable Minimum Standard is specifically satisfied.

Permanent Stabilization

After final grade is achieved the site shall be permanently stabilized. Seed shall be applied to all grass areas per the landscape plans included with the site plan. Other areas, to be shown in the full construction plan set, will be paved, contain buildings, sidewalks, etc. Some areas will be enhanced with trees, shrubs, mulch, etc.

Construction Sequence

Phase I Erosion Control Sequence

- 1. Submit and obtain all applicable permits. Contact applicable utility companies and coordinate utility relocation/removal.
- 2. Do not initiate any land disturbing activity until authorized to proceed by owner.
- 3. Coordinate mobilization and job site access with owner's representative and City of Virginia Beach Department of Public Works.
- 4. The contractor shall contact environmental stormwater management and environmental services so that a pre-construction conference can be scheduled.
- 5. Contractor is responsible for damage to existing pavement, unpaved right-of-way, and existing structures to remain due to truck traffic, and for keeping the roadway clean.
- 6.Install all erosion control measures as shown. Maintain E&SC measures throughout the project.
- 7. After perimeter erosion control measures are installed, with approval of the erosion control inspector, begin demolition and abandonment procedures as indicated on the plans.
- 8. Existing storm sewer system shall be maintained and remain operational until new storm sewer system is installed.
- 9. Always maintain positive drainage to existing storm sewer system and adjust measures if necessary to intercept sediment and prevent erosion.
- 10. The contractor shall inspect all erosion control measures periodically and after each rainfall event. Any necessary repairs or cleanup to maintain the effectiveness of the erosion control devices shall be made immediately in accordance with MS-5.
- 11. The contractor is responsible for the installation of any additional erosion control measures necessary to prevent erosion and sedimentation as determined by the inspector.

Phase II Erosion Control Sequence

- 1. Install underground utilities as depicted on the plans.
- 2. Rough grade the entire site and promptly stabilize areas to be vegetated as they are brought to final grade.
- 3. Install curb and stone base for parking lot and drive aisles.
- 4. Install concrete sidewalks and other impervious surfaces.
- 5. Fine grade roadways and commence asphalt paving at the direction of the owner.
- 6. Seed and permanently stabilize any remaining disturbed areas.
- 7. After completion of construction and flushing the stormwater conveyance system, remove all remaining erosion control measures. All temporary measures shall be removed within 30 days after final site stabilization or after the temporary measures are no longer needed, unless otherwise authorized by the VSMP authority.

Stormwater Management

Timmons Group is using the Virginia Beach Stormwater Management Model (PCSWM) to comprehensively address the issue of stormwater management on this project. An in depth report on the results in PCSWMM are included in the SWMM Narrative of this project submittal.

Existing Conditions

Portions of the site are located within flood plain zone AE (Elev. 7'). Additionally, the seasonal high ground water table is at Elev. 1.5', based upon the geotechnical engineering report.

The existing drainage for the development collects to an on-site low elevation, then overflows into five (5) subcatchment areas. The two (2) points of analysis adjacent to the property are:

- Point of analysis #1 (POA1) contains Western drainage. Stormwater is routed via storm pipes towards Mystic Cove Dr., then is discharged into Lynnhaven Bay.
- Point of analysis #2 (POA2) contains Western drainage. Stormwater is routed via storm pipes to a stormwater pump station located on Winston Place, then is discharged through a BMP into the Lynnhaven Bay.

Proposed Conditions

Proposed drainage was routed in split directions to POA1 & POA2. Preliminarily, it was assumed that all proposed drainage could be released into the pump station route; however, results found that upstream inlets were significantly impacted.

The proposed stormwater routing design is to release right-of-way drainage to the west (POA1) directly, and control on-site drainage to the east (POA2) pump station route. On-site drainage is to be controlled by outlet structures that are apart of four (4) stone-reservoir perforated pipe BMP systems between lots. The total volume provided with underground BMPs is approximately 7,500 CF.

100-Year Check Storm

The results of the 100-YR check storm show no increases in HGL greater than 0.05-ft, upstream or downstream of the site. Ponding is expected on-site during the check storm; however, it is contained within the limits of the site. Therefore, no adverse impacts to adjacent properties are created by this development.

Flood Protection

The flood protection requirements, in accordance with 9VAC25-875-600-C.3.c, is fulfilled by the containment of post-development HGLs from the project site to the mapped floodplain (Elev. 7.0') for both points of analysis (POA 1 & 2) during the 10-year, 24-hour storm. A table showing HGL and rim elevations from the project site and surrounding areas can be found in Appendix C.

Channel Protection

The channel protection requirements are fulfilled, in accordance with 9VAC25-875-600-B.1.b, by proposing stormwater velocities that will not cause erosion to the system. The analysis was performed using the PCSWMM model to both points of analysis, POA1 and POA2, at which the drainage area of

Ocean Park Subdivision Virginia Beach, VA Project Narrative and Calculations Timmons Project Number: 50568 July 3, 2025

the project site is 1% or less than the total drainage area. The 1% point for our analysis for both POAs is Lynnhaven Bay, which meets the definition provided below, of a Major Water Body.

Major Water Body – A public bay, creek, lake, stream, river, ocean, or other large body of water the receives stormwater runoff and has a base flood elevation determined by the current FEMA Flood Insurance Study (FIS), the City Stormwater Master Plan, or other study available from the Public Works Stormwater Engineering Center.

A map of the project site and the point of analysis as well as a table showing non-erosive velocities can be found in Appendix C.

Pump Station Analysis

Based on results in the 2-YR, 10-YR, and 100-YR storm events, no adverse impacts are seen to the downstream pumpstation (OP_PS2) from the addition of on-site drainage. Results show that the three (3) pumps (OP_PS2_P1, OP_PS2_P2, and OP_PS2_P3) have improved Utilization (%) and less Total Volume (MG) combined in all storm events.

Stormwater Quality

The Virginia Runoff Reduction Method (VRRM) Re-Development Compliance Spreadsheet was used to calculate the Total Phosphorus Load (TP) and runoff reduction required for the site. Approximately 3.13 acres will be disturbed for this development. The underground stone reservoir systems do not provide pollutant removal. The TP load reduction required for this project is 1.41 lb/yr.

It is anticipated that water quality guidelines (9VAC25-875-610, Code B-2) will be met via purchase of nutrient credits from the Nansemond Shoals Nutrient Reduction Implementation Plan (NRIP).

Refer to Appendix C for Stormwater Quality Calculations.

Utilities

Water

An existing 8" DI water main is provided east of the project site along Winston Place. The connection to the existing water main will be made with an 8' x 8' tee, from the connection, an 8" DI main will be extended to service the remaining portion of the development. The easternmost lots will connect to the existing main and the westernmost will be served by the newly proposed main extension. 5/8" water meters will be installed for the domestic service line and will connect to the duplexes via a 1" PVC. The proposed 8" watermain will terminate right before the cul de sac with a 2" blow off assembly. A new fire hydrant assembly Is proposed at the western region of the site.

The construction classification of the proposed building was assumed to be a two-family dwelling. Using the IFC Method of calculating Needed Fire Flow, it was determined that the required fire flow for the proposed buildings is 1,000 GPM.

A water model has been prepared to analyze the proposed water systems using fire hydrant capacity curves as provided by City of Virginia Beach staff. The average day demands are based on 225 gallons per house per day (gpd/house), taken from the City of Virginia Beach Department of Public Utilities

Ocean Park Subdivision Virginia Beach, VA Project Narrative and Calculations Timmons Project Number: 50568 July 3, 2025

Design Standards Manual. The maximum day demand is calculated as 1.4 times the average day demand. Peak hour demands were based on the below equation from the Virginia Waterworks regulations (12VAC5-590-690): $Q=11.4N^{0.544}$, where Q equals total gallons per minute (gpm) and N equals total number of residential units. The calculated domestic demands are provided below:

Average Day Demand = 4.4 GPM Max Day Demand = 6.1 GPM Peak Hour Demand = 23.0 GPM

Each of the above model runs were run as a steady state model, which reports residual pressure in the "Pressure" column of the reporting tables.

Fire flow calculations within the model are run based on the Maximum Day with Manual Fire. The Maximum Day with Manual Fire scenario runs the maximum flow that can be used from each hydrant while still satisfying a 20-psi minimum pressure constraint. The fire flow report table for this scenario shows this flow as the Fire Flow (Available) column, as well as the maximum pipe velocity during that flowrate. The Pressure column shows the residual pressure without the fire flows compared to the Pressure (Calculated Residual) column shows the residual pressure when the fire flow is applied. The Maximum Day with Manual Fire runs the hydrant with the lowest allowable demand at 6.1 gpm max plus 1,000 gpm fire to show the demands throughout the system during a fire

Water related calculations along with water modeling results have been provided in Appendix D.

Sewer

There is an existing 8" DI sanitary sewer along Winston Place. A connection to the existing main will be made with a straddle manhole and a new proposed sanitary main will be extended westward along the new street. The easternmost lots will connect to the existing main and the westernmost will be served by the newly proposed main extension. All lots will have two separate 4" SDR 26 PVC sewer service laterals with 4" cleanouts.

The City of Virginia Beach standards give an average flow of 6.03 gpm and peak flow of 15.07 gpm.

Sanitary sewer calculations can be found in Appendix D.

Ocean Park Subdivision Virginia Beach, VA Project Narrative and Calculations Timmons Project Number: 50568 July 3, 2025

Appendix A - Soil Maps and Geotechnical Report

MAP LEGEND MAP INFORMATION The soil surveys that comprise your AOI were mapped at Area of Interest (AOI) С 1:15.800. Area of Interest (AOI) C/D Soils Warning: Soil Map may not be valid at this scale. D Soil Rating Polygons Enlargement of maps beyond the scale of mapping can cause Not rated or not available Α misunderstanding of the detail of mapping and accuracy of soil **Water Features** line placement. The maps do not show the small areas of A/D Streams and Canals contrasting soils that could have been shown at a more detailed В Transportation B/D Rails ---Please rely on the bar scale on each map sheet for map measurements. Interstate Highways C/D Source of Map: Natural Resources Conservation Service **US Routes** Web Soil Survey URL: D Major Roads Coordinate System: Web Mercator (EPSG:3857) Not rated or not available -Local Roads Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts Soil Rating Lines Background distance and area. A projection that preserves area, such as the Aerial Photography Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required. This product is generated from the USDA-NRCS certified data as of the version date(s) listed below. B/D Soil Survey Area: City of Virginia Beach, Virginia Survey Area Data: Version 18, Aug 28, 2024 Soil map units are labeled (as space allows) for map scales 1:50.000 or larger. D Not rated or not available Date(s) aerial images were photographed: May 9, 2022—Aug 15. 2022 **Soil Rating Points** The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background A/D imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident. B/D

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
10	Corolla fine sand	A	1.7	56.3%
30	Psamments	A	1.4	43.7%
Totals for Area of Interest			3.1	100.0%

Description

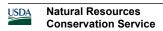
Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.


Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition

Component Percent Cutoff: None Specified

Tie-break Rule: Higher

ECS MID-Atlantic, LLC

Geotechnical Engineering Report

Marlin Bay Drive Site Improvements

Marlin Bay Drive Virginia Beach, VA

ECS Project Number 04:12065

November 23, 2022

Geotechnical • Construction Materials • Environmental • Facilities

November 23, 2022

Mr. Chris Aebel, P.E. Timmons Group 2901 S Lynnhaven Road, Suite 200 Virginia Beach, VA 23452

ECS Project No. 04:12065

Reference: Report of Subsurface Exploration and Geotechnical Engineering Analysis

Marlin Bay Drive Site Improvements

Virginia Beach, Virginia

Dear Mr. Aebel,

ECS Mid-Atlantic LLC (ECS) has completed the subsurface exploration, laboratory testing, and geotechnical engineering analyses for the above referenced project. Our services were performed in general accordance with our proposal no. 04:18476-GP, dated October 6, 2022. This report presents our understanding of the geotechnical aspects of the project, the results of the field exploration and laboratory testing conducted, and our preliminary recommendations for design and construction.

It has been our pleasure to be of service to Timmons Group during the design phase of this project. We would appreciate the opportunity to remain involved during the continuation of the design phase, and we would like to provide our services during construction phase operations as well to verify the assumptions of subsurface conditions made for this report. Should you have any questions concerning the information contained in this report, or if we can be of further assistance to you, please contact us.

Respectfully submitted,

ECS Mid-Atlantic, LLC

Justin Hogg, P.E. Geotechnical Dept. Manager ihogg@escslimited.com

Lic. No. 06096

VONAL ENGINE

Joshua B. Monnikendam, E.I.T. Geotechnical Staff Project Manager jmonnikendam@ecslimited.com

David M. Anderson, P.E. Principal Engineer danderson1@ecslimited.com

TABLE OF CONTENTS

EXECUTIVE SUMMARY	1
1.0 INTRODUCTION	2
2.0 PROJECT INFORMATION	3
2.1 PROJECT LOCATION/CURRENT SITE USE/PAST SITE USE	3
2.2 PROPOSED CONSTRUCTION	3
3.0 FIELD EXPLORATION	4
3.1 SUBSURFACE CHARACTERIZATION	4
3.2 GROUNDWATER OBSERVATIONS	
3.3 LABORATORY TESTING	
4.0 DESIGN RECOMMENDATIONS	
4.1 PAVEMENT SECTIONS	
4.2 INFILTRATION RECOMMENDATIONS	
5.0 SITE CONSTRUCTION RECOMMENDATIONS	
5.1 SUBGRADE PREPARATION	8
5.1.1 Demolition, Stripping, and Grubbing	8
5.1.2 Proofrolling	9
5.2 EARTHWORK OPERATIONS	9
5.2.1 Structural Fill Materials	9
6.0 CLOSING	10

APPENDICES

Appendix A - Drawings & Reports

- Site Location Diagram
- Boring Location Diagram
- Subsurface Profile Soil Borings

Appendix B – Field Operations

- Reference Notes for Boring Logs
- Subsurface Exploration Procedures: SPT
- Boring Logs B-01 through B-04

Appendix C – Laboratory Data

- Laboratory Test Results Summary
- Particle Size Analysis Test Results
- Atterberg Limits Results
- Standard Proctor Results
- California Bearing Ratio (CBR) Results

Appendix D – Infiltration Results

EXECUTIVE SUMMARY

The following summarizes the main findings of the field exploration, particularly those that may have a cost impact on the planned development. Information gleaned from the executive summary should not be utilized in lieu of reading the entire report.

- The geotechnical exploration performed for the proposed development included four (4) soil test borings drilled to depths of 10 feet below the ground surface within the proposed roadways and BMP facilities. Additionally, two (2) bulk samples were collected within the proposed roadways for standard compaction and CBR testing and four (4) infiltration tests were performed at each bore location.
- The borings were conducted within a moderately wooded area and contained minimal amounts of topsoil as surface cover. The borings generally encountered Alluvial intermixed deposits of Poorly Graded Fine to Medium Sand with Silt (SP-SM) and Sand (SP) to the maximum explored depths of 10 feet below existing site grades. These coarsegrained soils were generally dense to very loose in relative density.
- In-situ infiltration testing was performed at each respective boring location in order to determine the appropriate infiltration rates and Hydrologic Soil Group for the project site. Based on the results of our borings, the soils across the project site fall under Class A.
- Based on the wooded nature of the site, deeper deposits of organics consisting of rootmat and forest litter should be considered as present throughout the area of development. This material, where encountered within the pavement subgrades should be removed and replaced with a well-compacted Structural Fill in accordance with this report.

1.0 INTRODUCTION

The purpose of this study is to provide geotechnical information for the site improvements for a new residential subdivision located along Marlin Bay Drive in the City of Virginia Beach, Virginia. Our evaluation was based on the plans dated December 11th, 2018 by MSA, P.C. Based on a review of the plans, Marlin Bay Drive will be extended to the east with a cul-de-sac at the end.

The recommendations developed for this report are based on project information supplied by Timmons Group and MSA, P.C. This report contains the results of our subsurface exploration, site characterization, engineering analyses, and recommendations for the design and construction of the proposed buildings and site features.

Our services were provided in accordance with our Proposal No. 04:18476-GP, dated October 14, 2022, as authorized by Timmons Group on October 14, 2022, which includes our Master Subconsultant Agreement between Timmons Group and ECS Mid-Atlantic, LLC.

This report contains the procedures and results of our preliminary subsurface exploration and laboratory testing programs, review of existing site conditions, engineering analyses, and recommendations for the design and construction of the project. The report includes the following items.

- A brief review and description of our field and laboratory test procedures and the results of testing conducted.
- A review of surface topographical features and site conditions.
- A review of area and site geologic conditions.
- A review of subsurface soil stratigraphy with pertinent available physical properties.
- Final copies of our soil test borings.
- Recommendations for pavements based on CBR results.
- Recommendations for site preparation and construction of compacted fills, including an evaluation of on-site soils for use as compacted fills.
- Evaluation of the site with respect to potential construction problems and recommendations dealing with earthwork and inspections during construction.
- Recommendations for BMP facilities based on the in-situ infiltration testing.
- Recommendations for additional testing for preparation of a final geotechnical engineering study.

The recommendations contained herein were developed from the data obtained in the soil test borings, which indicate subsurface conditions at the specific locations at the time of exploration. Soil and groundwater conditions may vary between the borings.

2.0 PROJECT INFORMATION

2.1 PROJECT LOCATION/CURRENT SITE USE/PAST SITE USE

The project site is located along Marlin Bay Drive in the City of Virginia Beach, Virginia. It is surrounded by Chesterfield Avenue to the north, the Pleasure House Point Natural Area to the east and south.

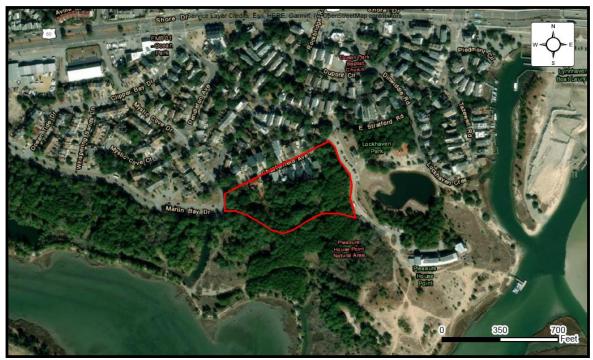


Figure 2.1.1 Site Location

The specific project site is currently overgrown and not occupied. The surrounding project site is currently indicated as the Pleasure House Point Natural Area with various hiking trails throughout. The area has high and low-lying areas at various places across the site. The provided plans concerning the existing site conditions and data from Google Earth indicate that elevations appear to vary from El. 7 to El. 12 feet across the site. These elevations should be considered approximate until surveying is conducted.

2.2 PROPOSED CONSTRUCTION

Based on the provided Site Plans, a new residential subdivision will be constructed on the property. We understand that the existing Marlin Bay Drive will be extended to the east, running parallel to the Pleasure House Point Natural Area. The end of the street will consist of a cul-desac. Gravel paths are anticipated to be constructed from the newly constructed roadway to tie into the neighboring property. Furthermore, stormwater management facilities are anticipated to accommodate the proposed construction.

3.0 FIELD EXPLORATION

The field exploration was planned with the objective of characterizing the project site in general geotechnical and geological terms and to evaluate subsequent field and laboratory data to assist in the determination of preliminary geotechnical recommendations.

3.1 SUBSURFACE CHARACTERIZATION

The subsurface conditions encountered were generally consistent with published geological mapping. The following sections provide generalized characterizations of the soil. Please refer to the boring logs in Appendix B.

Approximate Depth	Elevation	Stratum	Description	Ranges of SPT ⁽²⁾ N-values
(ft)	(ft)			(bpf)
0 - 0.5	E.L 11 - E.L 10.5	N/A	Surface cover generally consisted of 3 to 6	N/A
			inches of topsoil in various locations across	
			the subject area.	
0.5 - 10	E.L 10.5 - E.L 1.0	I	Underlying the surface cover, Stratum I soils generally consisted of Alluvial intermixed deposits of Poorly Graded Sand with Silt (SP-SM) and Poorly Graded Sand (SP). These coarse-grained materials were very loose to dense in relative density	

Notes:

- (1) Please note that the ground surface elevations were not surveyed by a licensed surveyor; these elevations are approximate based on Google-Earth© and published City GIS maps. Therefore, elevation ranges are approximate +/- several feet
- (2) Standard Penetration Testing

A graphical presentation of the subsurface conditions is shown on the Subsurface Soil Profiles included in Appendix A.

3.2 GROUNDWATER OBSERVATIONS

Water levels in our borings were estimated based on visual/manual observation of the moisture content of recovered SPT samples and hand auger borings. The use of wet drilling methods (mud rotary) precludes direct measurement of water levels in the open boreholes and therefore, the hand auger borings more accurately portray actual groundwater conditions on the project site.

Groundwater depths at the time of drilling were approximately 4 to 7 feet below ground surface as noted on the boring logs in Appendix B depending on the elevation at which they were conducted. Furthermore, stabilized groundwater conditions were evaluated within the hand auger borings performed for the infiltration testing. Stabilized conditions appeared to be similar to the depths recorded at the time of drilling. The groundwater table was generally shallower from west to east.

Based on our experience with the geology in the vicinity of the site, the Seasonal High Water Table (SHWT) is generally encountered 1 foot above the stabilized groundwater readings. As such and based on the time of year in which our field exploration was conducted, an increase in

moisture content, and changes in the color of the soils, we estimate that the average SHWT to be on the order of approximately 6 to 3 feet below existing site grades (in the eastward direction) in the vicinity of the proposed stormwater management facility. At the time of this report, a topographic survey was not provided and therefore, the elevations indicated on our boring logs should be considered approximate. Below provides a summary of the conditions encountered on the project site:

Boring Location	Stabilized Groundwater Depths Below Grade (ft)	Seasonal High Water Table Estimated Depth Below Grade (ft)
INF-01/B-01	7.0	6.0
INF-02/B-02	6.75	6.0
INF-03/B-03	5.0	4.0
INF-04/B-04	4.0	3.0

A water table aquifer is distinguished from a perched groundwater table based on the water table aquifer's recharge ability, which may be limitless but can be lowered temporarily through adequate dewatering techniques such as deep wells and well points. Perched groundwater is often alleviated in excavations by pumping from sump pits and French drains. Variations in both groundwater types (perched and groundwater table aquifer) can occur as a result of changes in precipitation, evaporation, surface water runoff, construction activities, and other factors.

3.3 LABORATORY TESTING

The laboratory testing consisted of selected tests performed on samples obtained during our field exploration operations. Classification and index property tests were performed on representative soil samples. The index testing program included natural moisture content tests (ASTM D2216), percent passing the No. 200 sieve (ASTM D6913), and Atterberg Limits tests (ASTM D4318).

Each sample was visually classified on the basis of texture and plasticity in accordance with ASTM D2488 Standard Practice for Description and Identification of Soils (Visual-Manual Procedures) and including USCS classification symbols and ASTM D2487 Standard Practice for Classification for Engineering Purposes (Unified Soil Classification System (USCS)). After classification, the samples were grouped in the major zones noted on the boring logs in Appendix B. The group symbols for each soil type are indicated in parentheses along with the soil descriptions. The stratification lines between strata on the logs are approximate; in situ, the transitions may be gradual. Additionally, two (2) bulk soil samples were obtained within the proposed pavement areas for Standard Proctor tests and California Bearing Ratio (CBR) testing to aide in the pavement design.

4.0 DESIGN RECOMMENDATIONS

4.1 PAVEMENT SECTIONS

Subgrade Characteristics: Two (2) bulk soil samples were obtained within the proposed pavement areas for CBR testing. Based on the results of our soil test borings performed within the pavement footprints, it appears that the pavement subgrades will consist mainly of a Poorly Graded Sand (SP) subgrade. An ECS Geotechnical Engineer should be present during construction operations to determine the suitability of this material to remain in place. Any undercut material should be replaced with a well-compacted Fill material in accordance with the recommendations provided herein.

CBR testing was performed on bulk samples obtained at boring locations B-01 and B-03. Test results indicated an average CBR value of 30. Therefore, a design CBR value of 20 (taken as 2/3 of the CBR results) should be utilized in developing the pavement section. The pavement design was determined using the City of Virginia Beach Public Works Manual dated March 2022. As discussed in the manual, traffic rates were determined using VDOT's Pavement Design Guide for Subdivision and Secondary Roads. Due to the nature of the site, an assumed Average Daily Traffic (ADT) of 100 vehicles per day was used. Table V-1 of the design manual indicates a 0.1% growth rate for residential subdivisions with cul-de-sacs. Based on this information subgrades consist of suitable materials evaluated by ECS and passing a proofroll test (Section 6.1.2 Proofrolling). In addition to the pavement sections provided below, it is anticipated that gravel access paths will be constructed from the roadway to tie into the neighboring natural area.

Listed thicknesses are minimums. The Civil Engineer should review actual traffic patterns and loading to determine whether or not these sections are appropriate. We further assume that the civil designer will include ditches and swales along the edges of all pavements to promote drainage away from pavement edges and prevent water penetration into pavements and subgrade soils.

PROPOSED PAVEMENT SECTIONS					
	FLEXIBLE P	AVEMENT	CDAVEL DATUS	RIGID PAVEMENT	
MATERIAL	Heavy Duty	Light Duty	GRAVEL PATHS	Heavy Duty	
Portland Cement Concrete (f'c = 4000 psi)	1	1	-	5.0 in	
Asphaltic Concrete Surface Course (SM-9.5)	1.5 in	1.5 in	-	-	
Asphaltic Concrete Surface Course (BM-25.0)	3.0 in	-	-	-	
Graded Aggregate Base Course (VDOT #21A/21B)	6.0 in	6.0 in	4.0 in	6.0 in	

In general, heavy-duty sections are areas that will be subjected to trucks, buses, or other similar vehicles including main drive lanes of the development. Light duty sections are appropriate for vehicular traffic and parking areas.

For the construction of new pavements, we recommend that any soft, unstable and/or unsuitable materials be removed from the pavement areas. The stripped surface should be proofrolled and carefully observed at the time of construction in order to aid in identifying any localized soft or unsuitable materials. This material, where encountered, should be closely evaluated during construction and should be removed from below the pavement as required or considered necessary by the Geotechnical Engineer. For construction during wet seasonal conditions, undercutting of loose, wet materials from below design subgrade elevations should be anticipated.

An important consideration with the design and construction of new pavements is surface and subsurface drainage. Where standing water develops, either on the pavement surface or within the base course layer, softening of the subgrade and other problems related to the deterioration of the pavement can be expected. Furthermore, good drainage should minimize the possibility of the subgrade materials becoming saturated over a long period of time. Based upon the results of the soil test borings, the groundwater table should not affect the performance of pavements. However, surface runoff which seeps into base materials could create localized deterioration of the soil's bearing capacity. Water that tends to collect within the base course layer may be minimized by installing weep holes in drainage structures and backfilling around these structures and storm sewer pipes with No. 57 Stone, construction of drainage swales and diversion ditches around the pavement perimeter, and proper backfilling and grading behind curbs to minimize water intrusion from behind the curbs.

4.2 INFILTRATION RECOMMENDATIONS

Our scope of our services included four (4) infiltration tests conducted at each boring location in order to determine stabilized groundwater depths, seasonal high water table estimates, and insitu infiltration parameters at the time of testing. At the time of our exploration, the depth of the stormwater management facilities was unknown. As a result, the test depths were conducted approximately 1 foot above the seasonal high water table elevations as discussed in Section 3.2.

Infiltration testing was performed at directly adjacent to each boring location from B-01 to B-04 as indicated on the boring location plan in Appendix A. Infiltration testing was conducted using the Johnson Permeameter device, which is capable of measuring the coefficient of permeability, or saturated hydraulic conductivity, in the vadose zone (i.e., the unsaturated zone above the groundwater table). The permeameter establishes a constant head of water at a specified depth by use of a precision valve and float assembly. The rate of water flow into the borehole required to maintain the constant head is then determined at selected time intervals appropriate for the soil type being tested. The chart below summarizes infiltration test results:

Boring No.	Test Depth (ft)	Estimated Permeability³ (in/hr)
B-01/INF-01	5.0	12.545
B-02/INF-02	4.75	6.816
B-03/INF-03	3.0	9.614
B-04/INF-04	2.0	5.411

A representative sample from the infiltration test location was tested for classification properties. The USDA textural classification and properties for the soil types tested are listed below with the following textural classifications observed:

Boring Number	Sample Number	Depth Interval (feet)	Percent Fines	Estimated USDA Texture Class	Estimated Hydrologic Soil Grouping	Published Infiltration Rate (in/hr)
B-01	S-5	4.5-5.0	1.1	Sand	Α	8.4
B-02	S-5	4.25-4.75	1.8	Sand	Α	8.4
B-03	S-3	2.5-3.0	2.1	Sand	Α	8.4
B-04	S-2	1.5-2.0	6.0	Sand	Α	8.4

Typically, soils with the Hydrologic Soil Group designations of A and B are considered suitable for infiltration purposes. Some soils designated as C type soils are considered suitable for infiltration practices but these soils would need to be evaluated on a case specific basis. Soils with group designations of D are generally not considered suitable. Based on the results of borings and in-situ infiltration testing, soils across the project site were relatively Class A soils. As a result, the soils are considered suitable for infiltration purposes across the project site.

Should infiltration be determined to be feasible for these facilities, the Geotechnical Engineer should be called on at the time of construction to verify the presence of suitable soils exposed at the bottom elevation of the facilities.

5.0 SITE CONSTRUCTION RECOMMENDATIONS

5.1 SUBGRADE PREPARATION

5.1.1 Demolition, Stripping, and Grubbing

Old foundations, pavements, or subsurface structures are not anticipated for the subject site, however, should be removed, where encountered, and replaced with well compacted Structural Fill. Subgrades disturbed by demolition and removal of existing site structures and utilities should be recompacted. Any resulting excavations should be thoroughly cleaned out of soft or wet materials and associated backfill, to the satisfaction of the Geotechnical Engineer, and grades restored by backfilling with well compacted Structural Fill.

The subgrade preparation should consist of stripping all vegetation, rootmat, topsoil, existing fill, and any soft or unsuitable materials from the 5-foot expanded building and pavement limits. Clearing for the wooded areas should be anticipated in the budget.

5.1.2 Proofrolling

Prior to fill placement or other construction on subgrades, the subgrades should be evaluated by an ECS field technician. The exposed subgrade should be thoroughly proofrolled with construction equipment having a minimum axle load of 10 tons [e.g. fully loaded tandem-axle dump truck]. Proofrolling should be traversed in two perpendicular directions with overlapping passes of the vehicle under the observation of an ECS technician. This procedure is intended to assist in identifying any localized yielding materials.

Where proofrolling identifies areas that are unstable or "pumping" subgrade those areas should be repaired prior to the placement of any subsequent Structural Fill or other construction materials. Methods of stabilization include undercutting, moisture conditioning, or chemical stabilization. The situation should be discussed with ECS to determine the appropriate procedure. Test pits may be excavated to explore the shallow subsurface materials to help in determining the cause of the observed unstable materials, and to assist in the evaluation of appropriate remedial actions to stabilize the subgrade.

5.2 EARTHWORK OPERATIONS

5.2.1 Structural Fill Materials

Prior to placement of Structural Fill, representative bulk samples (about 50 pounds) of on-site and/or off-site borrow should be submitted to ECS for laboratory testing, which will typically include Atterberg limits, natural moisture content, grain-size distribution, and moisture-density relationships (i.e., Proctors) for compaction. Import materials should be tested prior to being hauled to the site to determine if they meet project specifications. Alternatively, Proctor data from other accredited laboratories can be submitted if the test results are within the last 90 days.

Satisfactory Structural Fill Materials: Materials satisfactory for use as Structural Fill should consist of inorganic soils with the following engineering properties and compaction requirements.

STRUCTURAL FILL INDEX PROPERTIES				
Subject	Property			
Building and Pavement Areas	LL < 25, PI<6			
Max. Particle Size	1 inch			
Fines Content	Max. 20 % < #200 sieve			

STRUCTURAL FILL COMPACTION REQUIREMENTS				
Subject Requirement				
Compaction Standard	Standard Proctor, ASTM D698			
Required Compaction	95% of Max. Dry Density			
Moisture Content	-3 to +3 % points of the soil's optimum value			
Loose Thickness	8 inches prior to compaction			

On-Site Borrow Suitability: Natural deposits of soils that meet the definition of Satisfactory Structural Fill as mentioned above are present on the site. In the event the material will be reused for Structural Fill, representative soil samples should be submitted for further laboratory testing to determine their compaction characteristics in accordance with the recommendations described above.

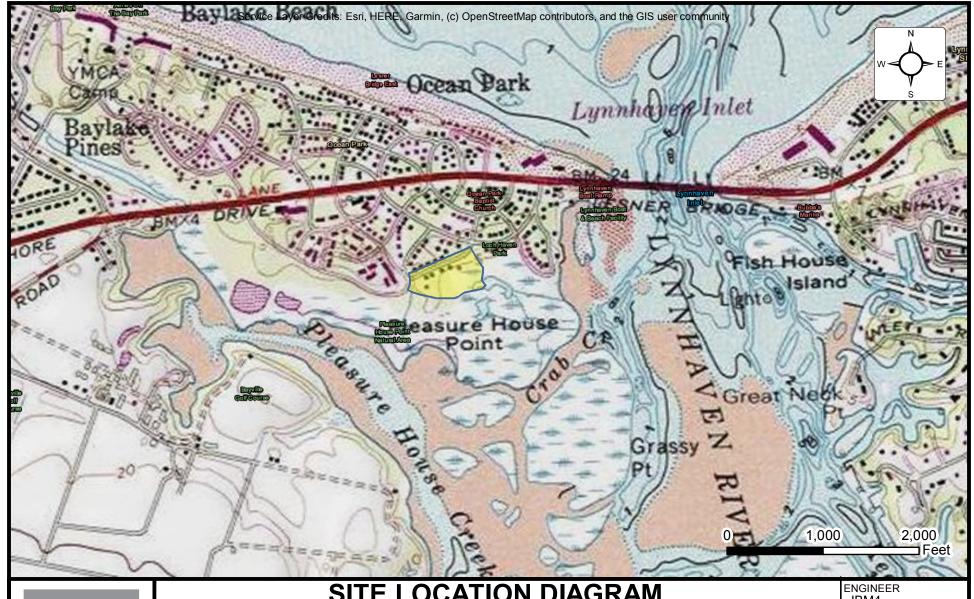
6.0 CLOSING

ECS has prepared this report to guide the geotechnical-related design and construction aspects of the project. We performed these services in accordance with the standard of care expected of professionals in the industry performing similar services on projects of like size and complexity at this time in the region. No other representation, expressed or implied, and no warranty or guarantee is included or intended in this report.

The description of the proposed project is based on information provided to ECS by Timmons Group. If any of this information is inaccurate or changes, either because of our interpretation of the documents provided or site or design changes that may occur later, ECS should be contacted so we can review our recommendations and provide additional or alternate recommendations that reflect the proposed construction.

We recommend that ECS review the project plans and specifications so we can confirm that those plans/specifications are in accordance with the recommendations of this geotechnical report.

Field observations and quality assurance testing during earthwork and foundation installation are an extension of, and integral to, the geotechnical design. We recommend that ECS be retained to apply our expertise throughout the geotechnical phases of construction, and to provide consultation and recommendation should issues arise.


ECS is not responsible for the conclusions, opinions, or recommendations of others based on the data in this report.

APPENDIX A – Drawings

Site Location Diagram Boring Location Diagram Subsurface Profile

SITE LOCATION DIAGRAM MARLIN BAY DRIVE SITE IMPROVEMENT

MARLIN BAY DRIVE, VIRGINIA BEACH, VIRGINIA **TIMMONS GROUP**

JBM4

SCALE AS NOTED

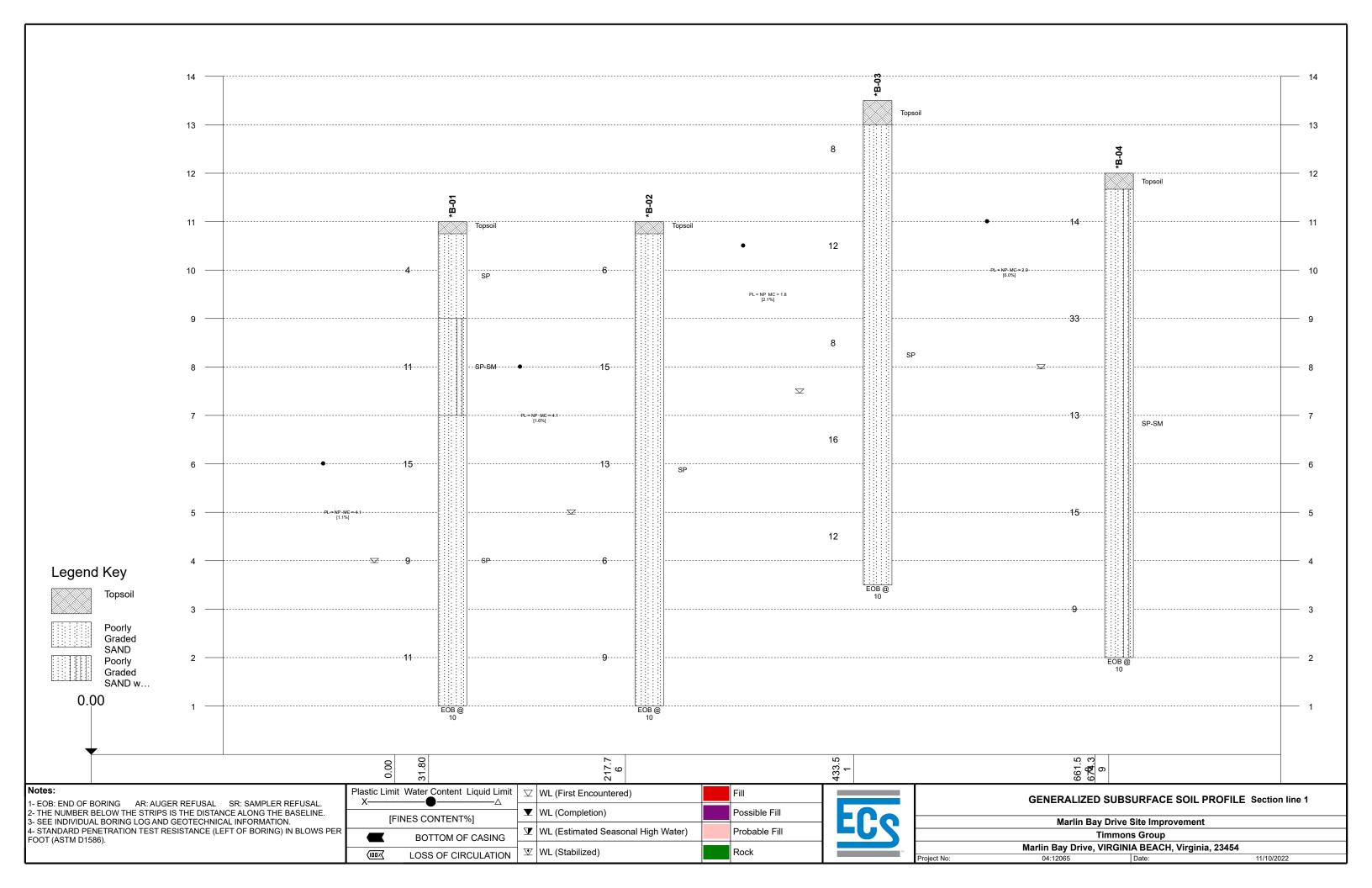
PROJECT NO. 04:12065

FIGURE 1 OF 1

DATE 11/10/2022

BORING LOCATION DIAGRAM MARLIN BAY DRIVE SITE IMPROVEMENT

MARLIN BAY DRIVE, VIRGINIA BEACH, VIRGINIA **TIMMONS GROUP**


ENGINEE	к
JBM4	

SCALE AS NOTED

PROJECT NO. 04:12065

FIGURE 1 OF 1

DATE 11/10/2022

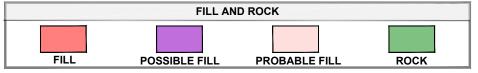
APPENDIX B – Field Operations

Reference Notes for Boring Logs Subsurface Exploration Procedure: SPT Boring Logs B-01 through B-04

REFERENCE NOTES FOR BORING LOGS

MATERIAL ¹	,2		
	ASPI	HALT	
	CONCRETE		
0.00	GRA	VEL	
	TOPS	SOIL	
	VOID		
	BRIC	К	
	AGG	REGATE BASE COURSE	
	GW	WELL-GRADED GRAVEL gravel-sand mixtures, little or no fines	
\$ \$ \$ \$	GP	POORLY-GRADED GRAVEL gravel-sand mixtures, little or no fines	
	GM	SILTY GRAVEL gravel-sand-silt mixtures	
II.	GC	CLAYEY GRAVEL gravel-sand-clay mixtures	
Δ Δ	sw	WELL-GRADED SAND gravelly sand, little or no fines	
	SP	POORLY-GRADED SAND gravelly sand, little or no fines	
	SM	SILTY SAND sand-silt mixtures	
////	sc	CLAYEY SAND sand-clay mixtures	
	ML	SILT non-plastic to medium plasticity	
	МН	ELASTIC SILT high plasticity	
	CL	LEAN CLAY low to medium plasticity	
	СН	FAT CLAY high plasticity	
	OL	ORGANIC SILT or CLAY non-plastic to low plasticity	
	ОН	ORGANIC SILT or CLAY high plasticity	
7 70 7 70 70	PT	PEAT highly organic soils	
I .			

DRILLING SAMPLING SYMBOLS & ABBREVIATIONS			
SS	Split Spoon Sampler	PM	Pressuremeter Test
ST	Shelby Tube Sampler	RD	Rock Bit Drilling
ws	Wash Sample	RC	Rock Core, NX, BX, AX
BS	Bulk Sample of Cuttings	REC	Rock Sample Recovery %
PA	Power Auger (no sample)	RQD	Rock Quality Designation %
HSA	Hollow Stem Auger		


PARTICLE SIZE IDENTIFICATION			
DESIGNAT	ION	PARTICLE SIZES	
Boulders		12 inches (300 mm) or larger	
Cobbles		3 inches to 12 inches (75 mm to 300 mm)	
Gravel:	Coarse	3/4 inch to 3 inches (19 mm to 75 mm)	
	Fine	4.75 mm to 19 mm (No. 4 sieve to ¾ inch)	
Sand:	Coarse	2.00 mm to 4.75 mm (No. 10 to No. 4 sieve)	
	Medium	0.425 mm to 2.00 mm (No. 40 to No. 10 sieve)	
	Fine	0.074 mm to 0.425 mm (No. 200 to No. 40 sieve)	
Silt & Cla	ay ("Fines")	<0.074 mm (smaller than a No. 200 sieve)	

COHESIVE SILTS & CLAYS		
UNCONFINED COMPRESSIVE STRENGTH, QP ⁴	SPT ⁵ (BPF)	CONSISTENCY ⁷ (COHESIVE)
<0.25	<2	Very Soft
0.25 - <0.50	2 - 4	Soft
0.50 - <1.00	5 - 8	Firm
1.00 - <2.00	9 - 15	Stiff
2.00 - <4.00	16 - 30	Very Stiff
4.00 - 8.00	31 - 50	Hard
>8.00	>50	Very Hard

RELATIVE AMOUNT ⁷	COARSE GRAINED (%) ⁸	FINE GRAINED (%) ⁸
Trace	<u><</u> 5	<u><</u> 5
With	10 - 20	10 - 25
Adjective (ex: "Silty")	25 - 45	30 - 45

60		
GRAVELS, SANDS & NON-COHESIVE SILTS		
SPT ⁵	DENSITY	
<5	Very Loose	
5 - 10	Loose	
11 - 30	Medium Dense	
31 - 50	Dense	
>50	Very Dense	

	WATER LEVELS®
$\overline{\triangle}$	WL (First Encountered)
Ī	WL (Completion)
Ā	WL (Seasonal High Water)
<u> </u>	WL (Stabilized)

¹Classifications and symbols per ASTM D 2488-17 (Visual-Manual Procedure) unless noted otherwise.

²To be consistent with general practice, "POORLY GRADED" has been removed from GP, GP-GM, GP-GC, SP, SP-SM, SP-SC soil types on the boring logs.

³Non-ASTM designations are included in soil descriptions and symbols along with ASTM symbol [Ex: (SM-FILL)].

⁴Typically estimated via pocket penetrometer or Torvane shear test and expressed in tons per square foot (tsf).

⁵Standard Penetration Test (SPT) refers to the number of hammer blows (blow count) of a 140 lb. hammer falling 30 inches on a 2 inch OD split spoon sampler required to drive the sampler 12 inches (ASTM D 1586). "N-value" is another term for "blow count" and is expressed in blows per foot (bpf). SPT correlations per 7.4.2 Method B and need to be corrected if using an auto hammer.

⁶The water levels are those levels actually measured in the borehole at the times indicated by the symbol. The measurements are relatively reliable when augering, without adding fluids, in granular soils. In clay and cohesive silts, the determination of water levels may require several days for the water level to stabilize. In such cases, additional methods of measurement are generally employed.

⁷Minor deviation from ASTM D 2488-17 Note 14.

⁸Percentages are estimated to the nearest 5% per ASTM D 2488-17.

SUBSURFACE EXPLORATION PROCEDURE: STANDARD PENETRATION TESTING (SPT) ASTM D 1586

Split-Barrel Sampling

Standard Penetration Testing, or **SPT**, is the most frequently used subsurface exploration test performed worldwide. This test provides samples for identification purposes, as well as a measure of penetration resistance, or N-value. The N-Value, or blow counts, when corrected and correlated, can approximate engineering properties of soils used for geotechnical design and engineering purposes.

SPT Procedure:

- Involves driving a hollow tube (split-spoon)
 into the ground by dropping a 140-lb hammer
 a height of 30-inches at desired depth
- Recording the number of hammer blows required to drive split-spoon a distance of 12 inches (in 3 or 4 Increments of 6 inches each)
- Auger is advanced* and an additional SPT is performed
- One SPT test is typically performed for every two to five feet
- Obtain two-inch diameter soil sample

^{*}Drilling Methods May Vary— The predominant drilling methods used for SPT are open hole fluid rotary drilling and hollow-stem auger drilling.

CLIENT										BORING NO.:		SHEET:			
Timmor PROJEC		-					04:120		ONTRAC	B-01		1 of 1		EC	9
Marlin I			e lmi	orove	ment				Orilling, I						<u> </u>
SITE LO					····•										
Marlin I	Bay Dri	ve, V	IRGIN	IIA BE	ACH, Virginia, 23454							LOSS OF	CIRCULATION		<u>}1007</u> }
NORTH					EASTING:	STATION:				SURFACE E	LEVATION:	BOTTON	M OF CASING		
349784	4.6				12184163.7					11.00			1		
ОЕРТН (FT)	SAMPLE NUMBER	SAMPLE TYPE	SAMPLE DIST. (IN)	RECOVERY (IN)	DESCRIPTION OF MATE	ERIAL		WATER LEVELS	ELEVATION (FT)	"9/SMOT8	20 40	PENETRATION BLOWS/FT 60 80 100 ITY DESIGNATION &	CALIBRATE 1 2 WAT [FIN	QUID LIMIT LASTIC LIMIT D PENETROM 3 4 TER CONTENT ES CONTENT 30 40	5 % %
-	S-1	SS	24	16	Topsoil Thickness[3.00"] (SP) Alluvium, FINE SAND,	light browr	າ,	// 	-	1-1-3-3 (4)	⊗				
- -	S-2	SS	24	18	moist, very loose (SP-SM) FINE SAND WITH moist, medium dense	SILT, brown	,		-	4-5-6-8 (11)	№				
5-	S-3	SS	24	16	(SP) FINE TO MEDIUM SAN brown to light gray, moist	to wet,			6-	4-7-8-7 (15)	⊗ 15		4	[1.1%]	
-	S-4	SS	24	18	medium dense to loose to dense	medium		abla	-	6-5-4-6 (9)	8				
10-	S-5	SS	24	18					- - - -	4-5-6-6 (11)	⊗ 11				
10-					END OF BORING AT	10 FT			-						
20 -									-4						
□ ∇ V					ON LINES REPRESENT THE APPROXII 7.00		ARY LINE			OIL TYPES. IN v 01 2022	CAVE IN		BE GRADUA	\L	
▼ M/ (Completion)				BORIN		VIEL	, INO	A OT 7077	CAVEIIN	DELTIII.					
Bo					PLETED	:	No	v 01 2022	HAMME	R TYPE: Au	to				
EQL					PMENT:			GGED BY:	DRILLING	METHOD: M u	ıd rotary				
WL (Stabilized) Track BND GEOTECHNICAL BOREHOLE LOG								•							

CLIENT										BORING NO.:		SHEET:			
Timmor PROJEC							04:120		ONTRAC	B-02		1 of 1		EC	9
Marlin I			e Imi	orove	ment		1		Orilling, I						<u> </u>
SITE LO												LOSS OF	CIRCULATION		\\ \\
		ve, VI	IRGIN	IIA BE	ACH, Virginia, 23454	T						LUSS OF	CIRCULATION		71007/
NORTH					EASTING:	STATION:				SURFACE E	LEVATION:	BOTTO	M OF CASING		
349780	9.6				12184349.2					11.00					
ОЕРТН (FT)	SAMPLE NUMBER	SAMPLE TYPE	SAMPLE DIST. (IN)	RECOVERY (IN)	DESCRIPTION OF MATE	ERIAL		WATER LEVELS	ELEVATION (FT)	"9/\$WDI8	20 40	ENETRATION BLOWS/FT 60 80 100 ITY DESIGNATION &	CALIBRATE 1 2 WAT [FIN	QUID LIMIT LASTIC LIMIT D PENETROM 3 4 TER CONTENT ES CONTENT] 30 40	5 % %
-	S-1	SS	24	20	Topsoil Thickness[3.00"] (SP) Alluvium, FINE SAND,	_	/		-	2-3-3-4 (6)	8				
- - -	S-2	SS	24	16	gray, moist to wet, loose to dense to loose	o medium			- - -	4-7-8-10 (15)	⊗		4	[1.6%]	
5-	S-3	SS	24	18					6-	5-6-7-5 (13)	⊗ /13				
-	S-4	SS	24	16				∇	-	4-3-3-3 (6)	⊗ 6				
-	S-5	SS	24	24				********	- - -	2-4-5-7 (9)	⊗ 9				
10-					END OF BORING AT	10 FT			1-						
15									-4						
	-				ON LINES DEPOSEDIT THE ADDROVE	*****	15////		T. 1 (EE) 6			ANGELONA			
THE STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUND ✓ WL (First Encountered) 6.00 BORI						ary line NG STAF			OIL TYPES. IN v 01 2022			RF GKADU	NL .		
■ MILICONNELLE ON				BORIN						E IN DEPTH:					
BOIL				PLETED:		No	v 01 2022	HAMMEI	R TYPE: Au	to					
EQUIF				EQUIPMENT: LOGGED BY: DRILLING METHOD: Mud rotary											
▼ WL (Stabilized) Track GEOTECHNIC						AL BO	ORF	BN HOLE							

			PROJECT NO.:			BORING NO.:		SHEET:							
Timmor PROJEC							04:120		ONTRAC	B-03		1 of 1			6
Marlin I			e Imi	orove	ment				Orilling, I						
SITE LO							1101100					1055 05	CIRCUILATION		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
		ve, V	IRGIN	IIA BE	ACH, Virginia, 23454							LUSS OF	CIRCULATION		71007/
NORTH					EASTING:	STATION:				SURFACE E	LEVATION:	BOTTOI	M OF CASING		
349781	1.4			l	12184565.0					13.50					l
DЕРТН (FT)	SAMPLE NUMBER	SAMPLE TYPE	SAMPLE DIST. (IN)	RECOVERY (IN)	description of mati	ERIAL		WATER LEVELS	ELEVATION (FT)	BLOWS/6"	20 40	ENETRATION BLOWS/FT 60 80 100 ITY DESIGNATION &	CALIBRATE 1 2 WAT [FIN	QUID LIMIT LASTIC LIMIT D PENETROM 3 4 TER CONTENT ES CONTENT 30 40	5 % %
-	S-1	SS	24	16	Topsoil Thickness[6.00"] (SP) Alluvium, FINE TO ME		_			3-4-4-5 (8)	⊗				
	S-2	SS	24	20	SAND, brown to white to g moist to wet, loose to medium dense	dium dense			-	5-6-6-7 (12)	⊗ 12		å	[2.1%]	
5-	S-3	SS	24	14	to loose to mediam dense	•			9-	7-3-5-9 (8)	8				
-	S-4	SS	24	18				\square	-	5-9-7-6 (16)	⊗ 16				
- - -	S-5	SS	24	16					- - 4-	5-7-5-3 (12)	⊗ 12				
10 -					END OF BORING AT	10 FT	<u> </u>								
15									-11 - -16 - -16 -						
		IF C=	DATIS	IC AT:	ON LINES DEDDESCENT THE ADDRESS.	MATE DOLLAR	A DV LINE		T\A/CC\$! ^	OII TYPES :	CITILITUE ZO	ANICITION A 4AV	DE CD 4 D		
THE STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUND ✓ WL (First Encountered) 6.00 BOR					ARY LINE			OIL TYPES. IN v 01 2022	CAVE IN		BE GRADUA	<u> </u>			
▼ WL (Completion)				NG											
BOTTING				PLETED:		No	v 01 2022	HAMMEI	R TYPE: Au	to					
EQUIP?				PMENT:	_		GGED BY:	DRILLING	6 METHOD: M u	ud rotary					
▼ WL (Stabilized) Track GEOTECHNICAL						AL BO	ORE	BN HOLE							

CLIENT:					PROJECT NO.:			BORING NO.:		SHEET:					
Timmor PROJEC							04:120		ONTRAC	B-04		1 of 1			9
Marlin I			e Imi	orove	ment		1		Orilling, I						<u> </u>
SITE LO												LOSS OF	CIRCULATION)100 <i>x</i>)
		ve, V	IRGIN	IIA BE	ACH, Virginia, 23454	T				Г		LO33 OF	CIRCULATION		<u> </u>
NORTH					EASTING:	STATION:				SURFACE E	LEVATION:	BOTTOI	M OF CASING		
349784	8.2				12184793.6					12.00					
ОЕРТН (FT)	SAMPLE NUMBER	SAMPLE TYPE	SAMPLE DIST. (IN)	RECOVERY (IN)	DESCRIPTION OF MATE	ERIAL		WATER LEVELS	ELEVATION (FT)	BLOWS/6"	20 40	PENETRATION BLOWS/FT 60 80 100 ITY DESIGNATION &	CALIBRATE 1 2 WAT [FIN	QUID LIMIT LASTIC LIMIT D PENETROM 3 4 ER CONTENT ES CONTENT] 30 40	5 % %
-	S-1	SS	24	16	Topsoil Thickness[4.00"] (SP-SM) Alluvium, FINE SA		_/		-	1-4-10-11 (14)	⊗ 14		2 •	[6.0%]	
	S-2	SS	24	16	SILT, tan to light gray, mois medium dense to dense to dense to				-	9-16-17-24 (33)	33				
5-	S-3	SS	24	12	defise to loose			\square	7- -	6-9-4-2 (13)	Ø 13				
-	S-4	SS	24	24					- - -	5-8-7-6 (15)	⊗ 15				
- - -	S-5	SS	24	18					-	4-5-4-3 (9)	⊗ 9				
10 -					END OF BORING AT	10 FT	1910	ļ.	2-						
20									-3						
THE STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUND ✓ WL (First Encountered) 4.00 BORI					ary line NG STAF			OIL TYPES. IN	-SITU THE TE		BE GRADUA	\L			
▼ WL (Completion)										JEГ1П: 					
BOTTING				PLETED:		No	v 01 2022	HAMME	R TYPE: Au	to					
EQUIP				PMENT:			GGED BY:	DRILLING	METHOD: Mu	ud rotary					
▼ WL (Stabilized) Track GEOTECHNICAL						AL BO	ORE	BN HOLE				•			

APPENDIX C – Laboratory Data

Laboratory Test Results Summary
Grain Size Analysis Test Results
Atterberg Limits Results
Standard Proctor Test Results
CBR Test Results

Laboratory Testing Summary

	Comple				Atte	rberg Li	mits	**Percent	Moisture	- Density	CBR (%)		
Sample Location	Sample Number	Depth (feet)	^MC (%)	Soil Type	LL	PL	PI	Passing No. 200 Sieve	<maximum (pcf)<="" density="" th=""><th><optimum Moisture (%)</optimum </th><th>0.1 in.</th><th>0.2 in.</th><th>#Organic Content (%)</th></maximum>	<optimum Moisture (%)</optimum 	0.1 in.	0.2 in.	#Organic Content (%)
B-01	Bulk	0-4	4.2	SP	NP	NP	NP	1.2	104.7	13.2	30.0	25.1	
B-01	S-3	4-6	4.1	SP	NP	NP	NP	1.1					
B-02	S-2	2-4	4.1	SP	NP	NP	NP	1.6					
B-03	Bulk	0-4	4.2	SP	NP	NP	NP	2.5	107.1	14.0	30.3	18.4	
B-03	S-2	2-4	1.8	SP	NP	NP	NP	2.1					
B-04	S-1	0-2	2.9	SP-SM	NP	NP	NP	6.0					

Notes: See test reports for test method, ^ASTM D2216-19, *ASTM D2488, **ASTM D1140-17, #ASTM D2974-20e1 < See test report for D4718 corrected values

Definitions: MC: Moisture Content, Soil Type: USCS (Unified Soil Classification System), LL: Liquid Limit, PL: Plastic Limit, PI: Plasticity Index, CBR: California Bearing Ratio, OC: Organic Content

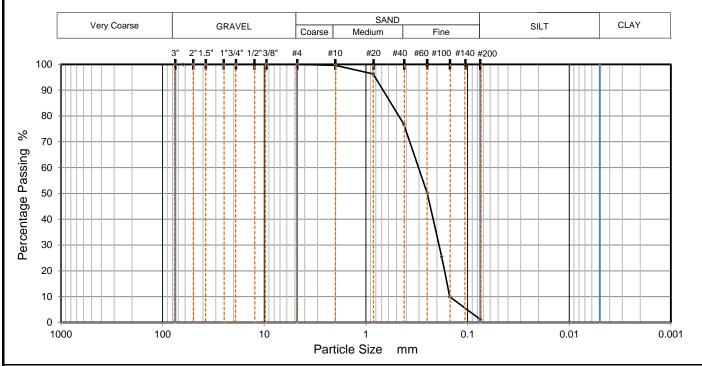
Project: Marlin Bay Drive Site Improvement

Client: Timmons Group

Project No.: 04:12065

Date Reported: 11/9/2022

Office / Lab


Address

Office Number / Fax

ECS Mid-Atlantic LLC - Chesapeake

804 Professional Place West Chesapeake, VA 23320 (757)366-5100

Tested by	Checked by	Approved by	Date Received
Technician	JMonnikendam	JMonnikendam	11/9/2022

TEST RESULTS (ASTM D6913M-17-METHOD A)

Sie	eving	Hydrometer S	Sedimentation
Particle Size	% Passing	Particle Size mm	% Passing
3"	100		
2.5"	100		
2"	100		
1 1/2"	100		
1"	100		
3/4"	100		
3/8"	100		
#4	100		
#10	100		
#20	96		
#40	77		
#60	50	1	
#80	26	1	
#100	10	1	
#200	1	1	

Sample Proportions	% dry mass
Very coarse, >3" sieve	0
Gravel, 3" to # 4 sieve	0
Coarse Sand, #4 to #10 sieve	0
Medium Sand, #10 to #40	23
Fine Sand, #40 to #200	76
Fines <#200	1

137.4

USCS	SP	Liquid Limit	NP	D90	0.679	D50	0.249	D10	0.150
AASHTO	A-3	Plastic Limit	NP	D85	0.568	D30	0.191	Cu	2.025
USCS Group Name	Poorly graded sand	Plasticity Index	NP	D60	0.304	D15	0.159	Сс	0.801

Project: Marlin Bay Drive Site Improvement

Office / Lab

ECS Mid-Atlantic LLC - Chesapeake

Client: Timmons Group

Sample Description: (SP) FINE TO MEDIUM SAND, light brown

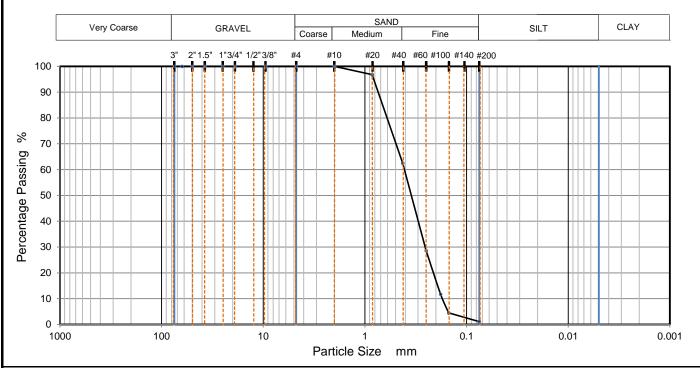
Sample Source: B-01

Project No.: 04:12065 Depth (ft): 0 - 4 Sample No.: D3S-21

Dry Mass of sample, g

Date Reported: 11/9/2022

804 Professional Place


West Chesapeake, VA

Address

23320

Office Number / Fax (757)366-5100

Tested by	Checked by	Approved by	Date Received	Remarks
Technician	JMonnikendam	JMonnikendam	11/9/2022	

TEST RESULTS (ASTM D6913M-17-METHOD A)

Sie	eving	Hydrometer S	Sedimentation
Particle Size	% Passing	Particle Size mm	% Passing
3"	100		
2.5"	100		
2"	100		
1 1/2"	100		
1"	100		
3/4"	100		
3/8"	100		
#4	100		
#10	100		
#20	97		
#40	63		
#60	29		
#80	12		
#100	5		
#200	1		

Sample Proportions	% dry mass
Very coarse, >3" sieve	0
Gravel, 3" to # 4 sieve	0
Coarse Sand, #4 to #10 sieve	0
Medium Sand, #10 to #40	38
Fine Sand, #40 to #200	61
Fines <#200	1

136.9

USCS	SP	Liquid Limit	NP	D90	0.741	D50	0.350	D10	0.172
AASHTO	A-3	Plastic Limit	NP	D85	0.670	D30	0.256	Cu	2.371
USCS Group Name	Poorly graded sand	Plasticity Index	NP	D60	0.409	D15	0.192	Сс	0.926

Project: Marlin Bay Drive Site Improvement

Client: Timmons Group

Sample Description: (SP) FINE TO MEDIUM SAND, light brown

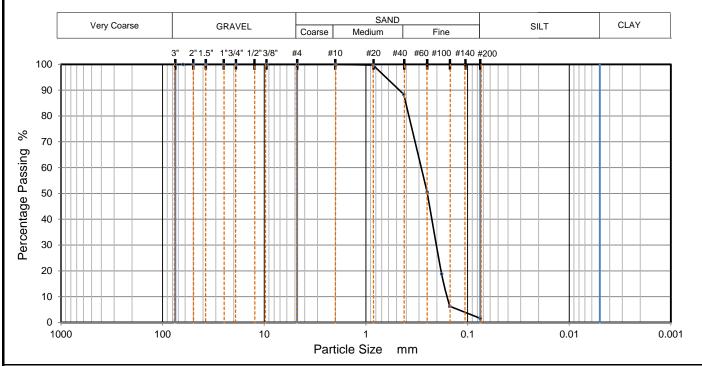
Sample Source: B-01

Project No.: 04:12065 Depth (ft): 4 - 6 Sample No.: S-3

Dry Mass of sample, g

Date Reported: 11/9/2022

Office / Lab Address Office Number / Fax 804 Professional Place


ECS Mid-Atlantic LLC - Chesapeake

West Chesapeake, VA

23320

(757)366-5100

Tested by	Checked by	Approved by	Date Received	Remarks
Technician	JMonnikendam	JMonnikendam	11/9/2022	

TEST RESULTS (ASTM D6913M-17-METHOD A)

Sie	eving	Hydrometer S	Sedimentation
Particle Size	% Passing	Particle Size mm	% Passing
3"	100		
2.5"	100		
2"	100		
1 1/2"	100		
1"	100		
3/4"	100		
3/8"	100		
#4	100		
#10	100		
#20	100		
#40	88		
#60	51		
#80	19		
#100	6		
#200	2		

Sample Proportions	% dry mass
Very coarse, >3" sieve	0
Gravel, 3" to # 4 sieve	0
Coarse Sand, #4 to #10 sieve	0
Medium Sand, #10 to #40	12
Fine Sand, #40 to #200	87
Fines <#200	2

137.5

USCS	SP	Liquid Limit	NP	D90	0.469	D50	0.249	D10	0.158
AASHTO	A-3	Plastic Limit	NP	D85	0.405	D30		Cu	1.804
USCS Group Name	Poorly graded sand	Plasticity Index	NP	D60	0.286	D15	0.170	Сс	0.904

Project: Marlin Bay Drive Site Improvement

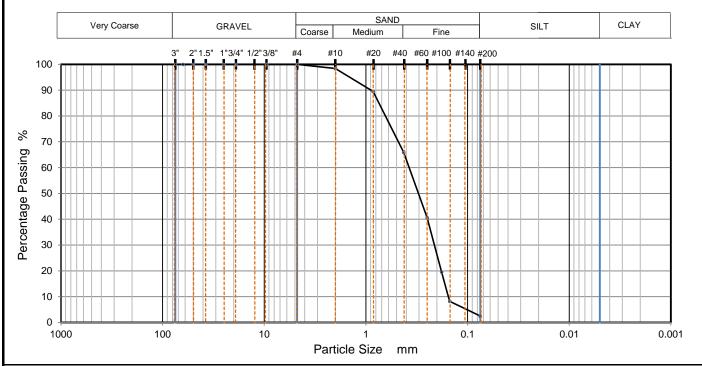
Client: Timmons Group Sample Description: (SP) FINE SAND, tan

Sample Source: B-02

Project No.: 04:12065 Depth (ft): 2 - 4

Dry Mass of sample, g

Sample No.: S-2 Date Reported: 11/9/2022


Office / Lab Address Office Number / Fax

ECS Mid-Atlantic LLC - Chesapeake

804 Professional Place West Chesapeake, VA

(757)366-5100

Tested by	Checked by	Approved by	Date Received	Remarks
Technician	JMonnikendam	JMonnikendam	11/9/2022	

TEST RESULTS (ASTM D6913M-17-METHOD A)

Sie	eving	Hydrometer S	Sedimentation
Particle Size	% Passing	Particle Size mm	% Passing
3"	100		
2.5"	100		
2"	100		
1 1/2"	100		
1"	100		
3/4"	100		
3/8"	100		
#4	100		
#10	98		
#20	90		
#40	66		
#60	41	1	
#80	20	1	
#100	8	1	
#200	3	1	

Sample Proportions	% dry mass
Very coarse, >3" sieve	0
Gravel, 3" to # 4 sieve	0
Coarse Sand, #4 to #10 sieve	2
Medium Sand, #10 to #40	33
Fine Sand, #40 to #200	63
Fines <#200	3

133.6

USCS	SP	Liquid Limit	NP	D90	0.892	D50	0.305	D10	0.154
AASHTO	A-3	Plastic Limit	NP	D85	0.745	D30	0.212	Cu	2.432
USCS Group Name	Poorly graded sand	Plasticity Index	NP	D60	0.376	D15	0.167	Сс	0.775

Project: Marlin Bay Drive Site Improvement

Client: Timmons Group

Sample Description: (SP) FINE TO MEDIUM SAND, light brown

Sample Source: B-03

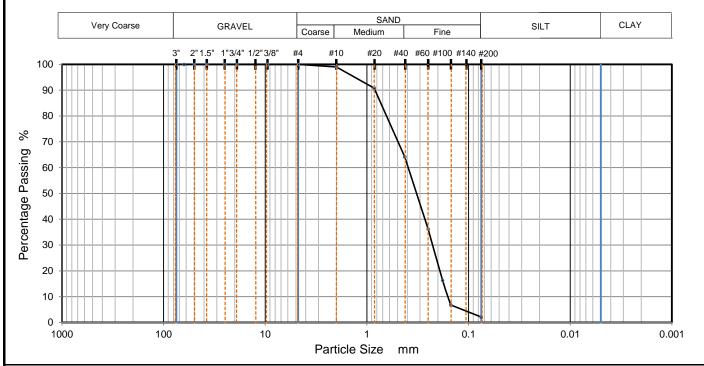
Project No.: 04:12065 Depth (ft): 0 - 4 Sample No.: D3S-22

Dry Mass of sample, g

Date Reported: 11/9/2022

ECS Mid-Atlantic LLC - Chesapeake We

Office / Lab


Address
804 Professional Place

West Chesapeake, VA

23320

Office Number / Fax (757)366-5100

Tested by	Checked by	Approved by	Date Received	Remarks
Technician	JMonnikendam	JMonnikendam	11/9/2022	

TEST RESULTS (ASTM D6913M-17-METHOD A)

Si	eving	Hydrometer S	Sedimentation
Particle Size	% Passing	Particle Size mm	% Passing
3"	100		
2.5"	100		
2"	100		
1 1/2"	100		
1"	100		
3/4"	100		
3/8"	100		
#4	100		
#10	99		
#20	91		
#40	64		
#60	36		
#80	16		
#100	7		
#200	2		

Sample Proportions	% dry mass
Very coarse, >3" sieve	0
Gravel, 3" to # 4 sieve	0
Coarse Sand, #4 to #10 sieve	1
Medium Sand, #10 to #40	35
Fine Sand, #40 to #200	62
Fines <#200	2

137.7

USCS	SP	Liquid Limit	NP	D90	0.833	D50	0.325	D10	0.160
AASHTO	A-3	Plastic Limit	NP	D85	0.731	D30		Cu	2.461
USCS Group Name	Poorly graded sand	Plasticity Index	NP	D60	0.393	D15		Сс	0.814

Project: Marlin Bay Drive Site Improvement

Client: Timmons Group

Sample Description: (SP) FINE TO MEDIUM SAND, brown

Sample Source: B-03

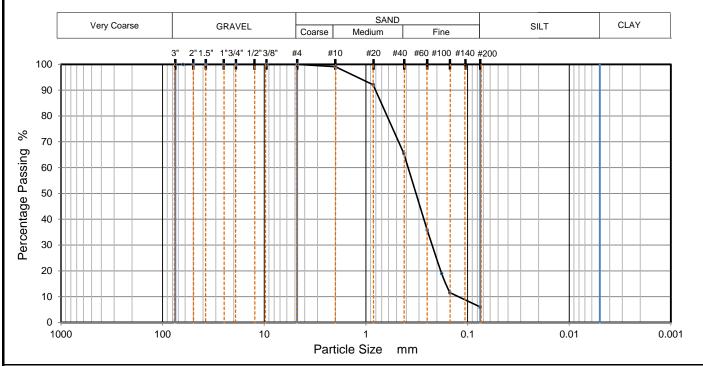
Project No.: 04:12065 Depth (ft): 2 - 4 Sample No.: S-2

Dry Mass of sample, g

Date Reported: 11/9/2022

ECS Mid-Atlantic LLC - Chesapeake West Ches

Office / Lab


804 Professional Place West Chesapeake, VA

Address

23320

Office Number / Fax (757)366-5100

Tested by	Checked by	Approved by	Date Received	Remarks
Technician	JMonnikendam	JMonnikendam	11/9/2022	

TEST RESULTS (ASTM D6913M-17-METHOD A)

Sie	eving	Hydrometer S	Sedimentation
Particle Size	% Passing	Particle Size mm	% Passing
3"	100		
2.5"	100		
2"	100		
1 1/2"	100		
1"	100		
3/4"	100		
3/8"	100		
#4	100		
#10	99		
#20	92		
#40	66		
#60	36	1	
#80	19	7	
#100	12	7	
#200	6	7	

Sample Proportions	% dry mass
Very coarse, >3" sieve	0
Gravel, 3" to # 4 sieve	0
Coarse Sand, #4 to #10 sieve	1
Medium Sand, #10 to #40	34
Fine Sand, #40 to #200	60
Fines <#200	6

127.5

USCS	SP-SM	Liquid Limit	NP	D90	0.805	D50	0.322	D10	0.123
AASHTO	A-3	Plastic Limit	NP	D85	0.706	D30	0.223	Cu	3.123
USCS Group Name	Poorly graded sand with silt	Plasticity Index	NP	D60	0.385	D15	0.163	Сс	1.050

Project: Marlin Bay Drive Site Improvement

Client: Timmons Group

Sample Description: (SP-SM) FINE TO MEDIUM SAND WITH SILT, tan

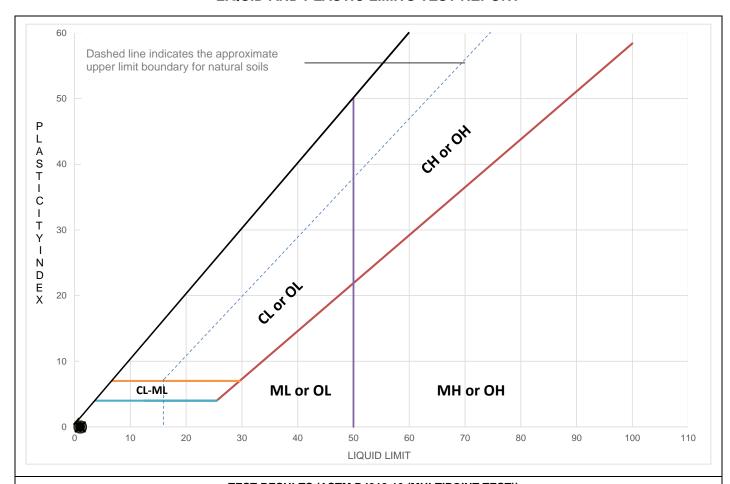
Sample Source: B-04

Project No.: 04:12065 Depth (ft): 0 - 2 Sample No.: S-1

Dry Mass of sample, g

Date Reported: 11/9/2022

Office / Lab Address Office Number / Fax


ECS Mid-Atlantic LLC - Chesapeake

804 Professional Place West Chesapeake, VA

(757)366-5100

Tested by	Checked by	Approved by	Date Received	Remarks
Technician	JMonnikendam	JMonnikendam	11/9/2022	

LIQUID AND PLASTIC LIMITS TEST REPORT

TEST RESULTS (ASTM D4318-10 (MULTIPOINT TEST))

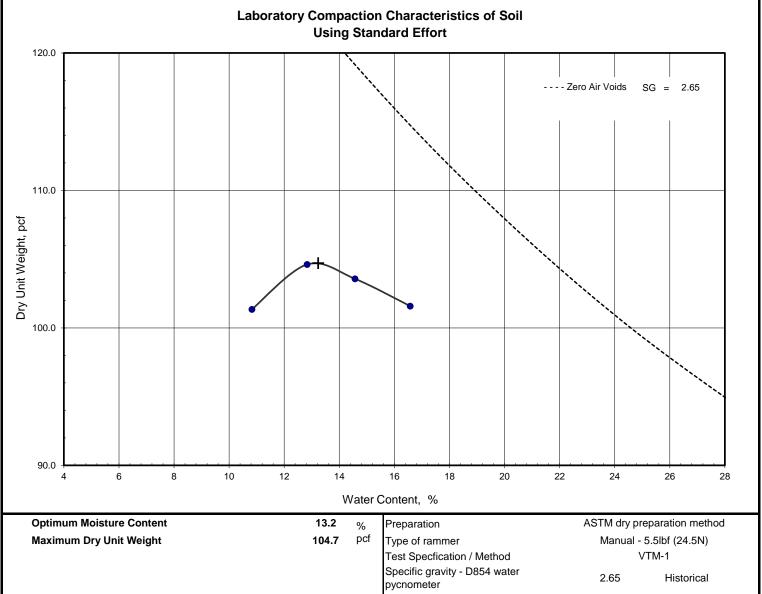
	Sample Location	Sample Number	Sample Depth (ft)	LL	PL	PI	%<#40	%<#200	AASHTO	uscs	Material Description
	B-01	D3S-21	0-4	NP	NP	NP	76.9	1.2	A-3	SP	(SP) FINE TO MEDIUM SAND, light brown
•	B-01	S-3	4-6	NP	NP	NP	62.5	1.1	A-3	SP	(SP) FINE TO MEDIUM SAND, light brown
A	B-02	S-2	2-4	NP	NP	NP	88.4	1.6	A-3	SP	(SP) FINE SAND, tan
•	B-03	D3S-22	0-4	NP	NP	NP	65.9	2.5	A-3	SP	(SP) FINE TO MEDIUM SAND, light brown
*	B-03	S-2	2-4	NP	NP	NP	64.2	2.1	A-3	SP	(SP) FINE TO MEDIUM SAND, brown
8	B-04	S-1	0-2	NP	NP	NP	65.6	6.0	A-3	SP-SM	(SP-SM) FINE TO MEDIUM SAND WITH SILT, tan

Project: Marlin Bay Drive Site Improvement

Client: Timmons Group

Project No.: 04:12065 Date Reported: 11/9/2022

Office / Lab


 ${\sf ECS\ Mid-Atlantic\ LLC\ -\ Chesapeake}$

Address

804 Professional Place West Chesapeake, VA 23320 Office Number / Fax

(757)366-5100 (757)366-5203

Tested by	Checked by	Approved by	Date Received
Technician	JMonnikendam	JMonnikendam	11/9/2022

Cumulative material retained on: 3/4 in. sieve 0.0 3/8 in. sieve 0.0

% %

#4 sieve 0.0 % Coarse Aggregate Specific Gravity -

Nat. Plasticity Soil Description Liquid Limit %< #200 USCS AASHTO Moist. % Index (SP) FINE TO MEDIUM SAND, light brown NΡ NP SP 4.2 1.2 A-3

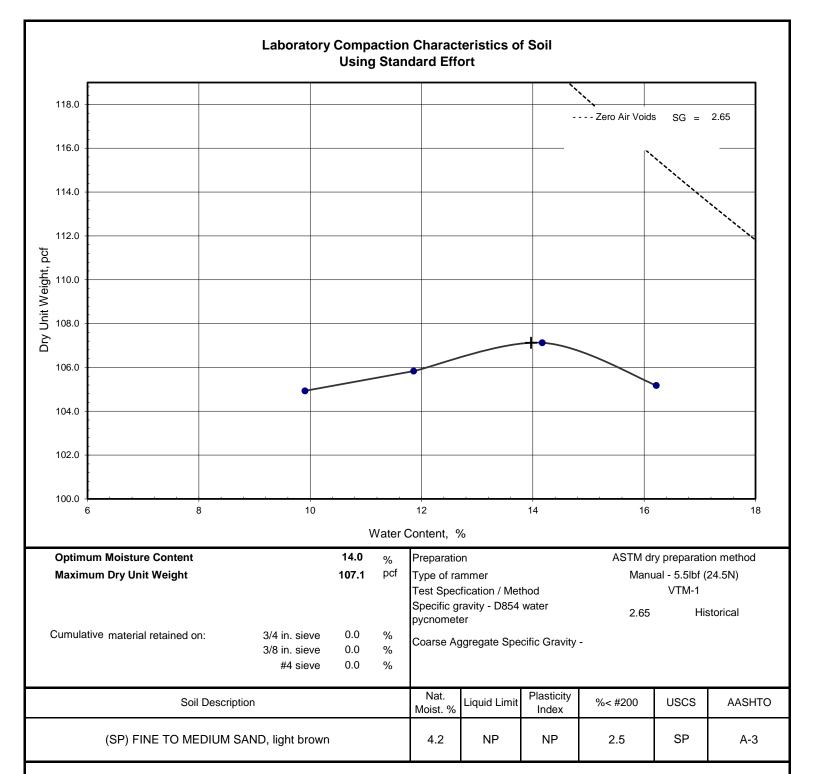
Project: Marlin Bay Drive Site Improvement

Client: Timmons Group

Sample / Source B-01 Test Reference/No.:

Project No.: 04:12065 Depth (ft.): 0 - 4 Sample No.: D3S-21

Date Reported:


Office / Lab Address Office Number / Fax

ECS Mid-Atlantic LLC - Chesapeake

804 Professional Place West Chesapeake, VA 23320

(757)366-5100

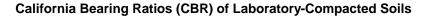
Tested by	Checked by	Approved by	Date Received	Remarks
Technician	JMonnikendam	JMonnikendam	11/9/2022	

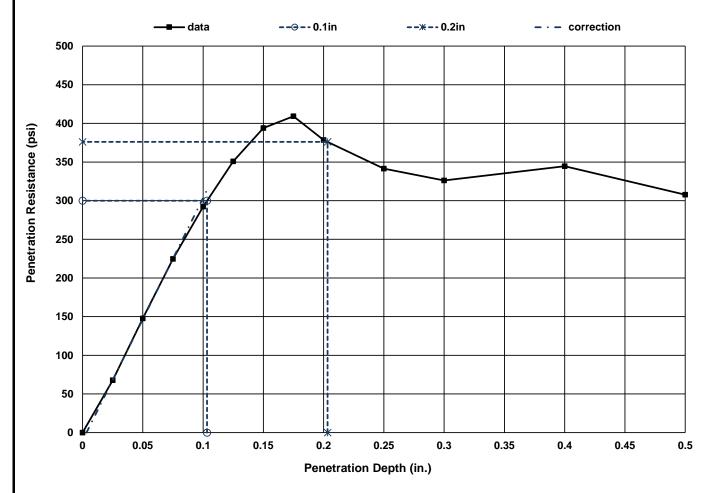
Project: Marlin Bay Drive Site Improvement

Client: Timmons Group

Sample / Source B-03 Test Reference/No.: Project No.: 04:12065 Depth (ft.): 0 - 4 Sample No.: D3S-22

Date Reported:




Office / Lab Address Office Number / Fax

ECS Mid-Atlantic LLC - Chesapeake

804 Professional Place West Chesapeake, VA 23320 (757)366-5100

Tested by	Checked by	Approved by	Date Received	Remarks
Technician	JMonnikendam	JMonnikendam	11/9/2022	

TEST RESULTS (VTM-8)

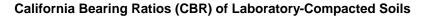
	Molded Soaked			CBR (%)			0		0 "			
Density (pcf)	Percent of Max. Dens.	Moisture (%)	Density (pcf)	Percent of Max. Dens.	Moisture (%)	0.1 in.	0.2 in.	Linearty Correction (in.)	,		Swell (%)	
107.1	102.3	13.3	107.3	102.5	13.0	30.0	25.1	0.00	10		0	.04
	Material Description			AASHTO	USCS	MAX. Dens. (pcf)	Optimum Moisture (%)	LL	PI	% Fines	% Gravel	
(\$	(SP) FINE TO MEDIUM SAND, light brown			A-3	SP	104.7	13.2	NP	NP	1.2	0.0	

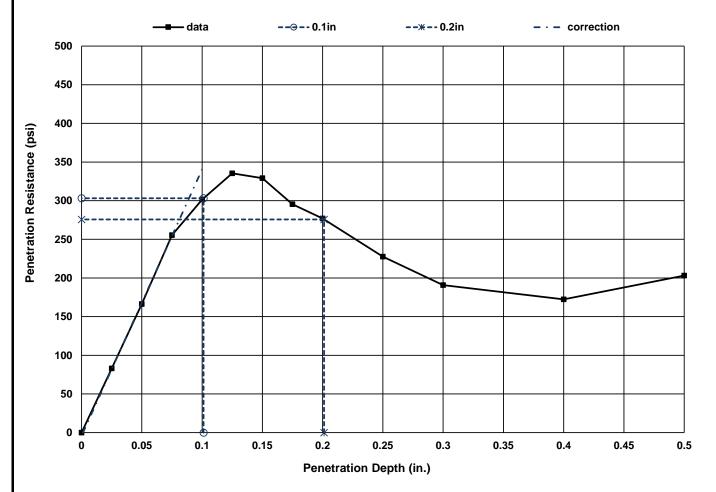
Project: Marlin Bay Drive Site Improvement

Client: Timmons Group

Sample / Source B-01 Test Reference/No.: 1 Project No.: 04:12065 Depth (ft.): 0 - 4

Sample No.: D3S-21 Date Reported: 11/22/2022


Office / Lab


Address

Office Number / Fax

ECS Mid-Atlantic LLC -Chesapeake 804 Professional Place West Chesapeake, VA 23320 (757)366-5100

Tested by	Checked by	Approved by	Date Received	Remarks
Technician	JMonnikendam	JMonnikendam	11/9/2022	

TEST RESULTS (VTM-8)

	Molded			Soaked		СВЕ	R (%)		Surcharge (lbs.)		Swell (%)	
Density (pcf)	Percent of Max. Dens.	Moisture (%)	Density (pcf)	Percent of Max. Dens.	Moisture (%)	0.1 in.	0.2 in.	Linearty Correction (in.)				
106.6	99.5	11.9	105.1	98.1	13.3	30.3	18.4	0.00	10		0.11	
Material Description			AASHTO	USCS	MAX. Dens. (pcf)	Optimum Moisture (%)	LL	PI	% Fines	% Gravel		
(SP) FINE TO MEDIUM SAND, light brown			A-3	SP	107.1	14	NP	NP	2.5	0.0		

Project: Marlin Bay Drive Site Improvement

Client: Timmons Group

Sample / Source B-03 Test Reference/No.: 1 Project No.: 04:12065 Depth (ft.): 0 - 4 Sample No.: D3S-22

Date Reported:

Office / Lab Address Office Number / Fax

ECS Mid-Atlantic LLC -Chesapeake 804 Professional Place West Chesapeake, VA 23320 (757)366-5100

Tested by	Checked by	Approved by	Date Received	Remarks
Technician	JMonnikendam	JMonnikendam	11/9/2022	

APPENDIX D – Infiltration Data

ECS MII	D-ATLANT	IC, LLC	SATUR	ATED HYDRAU	ILIC CONDU	CTIVITY W	ORKSHEE	T s	Sheet No.:	1	
Project Name.:	Marlin Bay Drive		Parcel INF-01			Terminology and Solution					
Boring No:	B-01		Date 11/01/2022			Ksat : Saturated hydraulic conductivity					
Investigators.:	BND		File Name:			Q: Stea	ady-state rate	of water flow	nto the soil		
Boring Depth.:	5'		WCU Base. Ht. h: 15.0 cm			H: Con	stant height c	of water in bore	hole		
Boring Dia:	9.5	cm	WCU Susp. Ht. S:	15.0	cm	r: Rad	ius of cylindri	cal borehole			
Boring Rad. (r):	4.76	cm	Const. Wtr. Ht. H:	30.0	cm	Ksat = Q[s	inh-1(H/r) - (r [:]	² /H ² +1) ^{.5} + r/H]	/ (2piH ²) [0	Glover, R. E.	
VOLUME	Volume Out	TIME	Elapse	d Time	Flow Rate Q		Ksat Equivalent Values				
(ml)	(ml) [a]	(hr:min:sec a/p)	(hr:min:sec)	(min) [b]	(ml/min) [a/b]		(cm/sec)	(cm/day)	(in/hr)	(ft/day)	
3000		3:42:38 PM									
2500	500	3:42:52 PM	0:00:14	0.23	2142.86	0.639	1.06E-02	920.0	15.092	30.18	
2000	500	3:43:12 PM	0:00:20	0.33	1500.00	0.447	7.45E-03	644.0	10.565	21.13	
1500	500	3:43:32 PM	0:00:20	0.33	1500.00	0.447	7.45E-03	644.0	10.565	21.13	
1000	500	3:43:51 PM	0:00:19	0.32	1578.95	0.471	7.85E-03	677.9	11.121	22.24	
500	500	3:44:08 PM	0:00:17	0.28	1764.71	0.526	8.77E-03	757.7	12.429	24.86	
0	500	3:44:23 PM	0:00:15	0.25	2000.00	0.596	9.94E-03	858.7	14.086	28.17	
	4.1% SP	Init. Satur.Time: Consistency: Water Tbl. Dpth:		ESTIMATED FIEL Bedrock Dpth: Imprm. Lyr.	N/A			Ksat is determin			
Structure/Fabric: ksatWKS_3.xls		water roi. upth:		nnson Permeameter tm	N/A				Rev. 06		

	D-AILANI.	IC, LLC	SATUR	ATED HYDRAU	LIC CONDU	CTIVITY W	ORKSHEE	T s	Sheet No.:	1
Project Name.:	Marlin Bay Drive		Parcel:	INF-02		Terminology and Solution				
Boring No:	B-02		Date 11/01/2022			Ksat : Saturated hydraulic conductivity				
nvestigators.:	BND		File Name:			Q: Stea	ady-state rate	of water flow	into the soil	
Boring Depth.:	4.75		WCU Base. Ht. h: 15.0 cm			H: Con	stant height o	f water in bore	ehole	
Boring Dia:	9.5	cm	WCU Susp. Ht. S:	15.0	cm	r: Radi	ius of cylindri	cal borehole		
Boring Rad. (r):	4.76	cm	Const. Wtr. Ht. H:	30.0	cm	Ksat = Q[si	inh-1(H/r) - (r ²	² /H ² +1) ^{.5} + r/H]	/ (2piH ²) [C	Glover, R. E.
VOLUME	Volume Out	TIME	Elapse	d Time	Flow Rate Q		Ksat	Equivalent Va	alues	
(ml)	(ml) [a]	(hr:min:sec a/p)	(hr:min:sec)	(min) [b]	(ml/min) [a/b]	(cm/min)	(cm/sec)	(cm/day)	(in/hr)	(ft/day)
3000		2:28:15 PM								
2500	500	2:28:45 PM	0:00:30	0.50	1000.00	0.298	4.97E-03	429.3	7.043	14.09
2000	500	2:29:11 PM	0:00:26	0.43	1153.85	0.344	5.73E-03	495.4	8.127	16.25
1500	500	2:29:39 PM	0:00:28	0.47	1071.43	0.319	5.32E-03	460.0	7.546	15.09
1000	500	2:30:10 PM	0:00:31	0.52	967.74	0.289	4.81E-03	415.5	6.816	13.63
500	500	2:30:41 PM	0:00:31	0.52	967.74	0.289	4.81E-03	415.5	6.816	13.63
0	500	2:31:12 PM	0:00:31	0.52	967.74	0.289	4.81E-03	415.5	6.816	13.63
Natural Moisture: Texture/Classif: Structure/Fabric:	4.1% SP	Init. Satur.Time: Consistency: Water Tbl. Dpth:		ESTIMATED FIEL Bedrock Dpth: Imprm. Lyr.				Ksat is determin results for final t		

ECS MII	D-ATLANT	IC, LLC	SATUR	ATED HYDRAU	LIC CONDU	CTIVITY W	ORKSHEE	T	Sheet No.:	1
Project Name.:	Marlin Bay Drive		Parcel INF-03				Termin	nology and So		
Boring No:	B-03		Date 11/1/2022			Ksat : Saturated hydraulic conductivity				
Investigators.:	BND		File Name:			Q: Stea	ady-state rate	of water flow	into the soil	
Boring Depth.:	3'		WCU Base. Ht. h:	15.0	cm	H: Con	stant height o	of water in bor	ehole	
Boring Dia:	9.5	cm	WCU Susp. Ht. S: 15.0 cm			r: Rad	ius of cylindri	cal borehole		
Boring Rad. (r):	4.76	cm	Const. Wtr. Ht. H: 30.0 cm Ksat = Q[sinh-1(H/r) - (inh-1(H/r) - (r	$^{2}/H^{2}+1)^{.5}+r/H$] / (2piH ²) [C	Glover, R. E	
VOLUME	Volume Out	TIME	Elapse	d Time	Flow Rate Q		Ksat	Equivalent V	alues	
(ml)	(ml) [a]	(hr:min:sec a/p)	(hr:min:sec)	(min) [b]	(ml/min) [a/b]		(cm/sec)	(cm/day)	(in/hr)	(ft/day)
3000		10:59:00 AM								
2500	500	10:59:25 AM	0:00:25	0.42	1200.00	0.358	5.96E-03	515.2	8.452	16.90
2000	500	10:59:58 AM	0:00:33	0.55	909.09	0.271	4.52E-03	390.3	6.403	12.81
1500	500	11:00:23 AM	0:00:25	0.42	1200.00	0.358	5.96E-03	515.2	8.452	16.90
1000	500	11:00:53 AM	0:00:30	0.50	1000.00	0.298	4.97E-03	429.3	7.043	14.09
500	500	11:01:14 AM	0:00:21	0.35	1428.57	0.426	7.10E-03	613.4	10.062	20.12
0	500	11:01:32 AM	0:00:18	0.30	1666.67	0.497	8.28E-03	715.6	11.738	23.48
Natural Moisture:	1.8%	Init. Satur.Time:	10:51:00 AM	ESTIMATED FIEL	D Ksat:		6.78E-03		9.614	
Texture/Classif:	SP	Consistency:			N/A			d Ksat is determing t results for final		
Structure/Fabric:		Water Tbl. Dpth:			N/A		. canaling of too	Journal Tor Tirilar		
ksatWKS_3.xls			Jol	nnson Permeameter tm	l .				Rev. 06	/16/05

ECS MII	D-ATLANT	IC, LLC	SATUR	ATED HYDRAU	LIC CONDU	CTIVITY W	ORKSHEE	T ,	Sheet No.:	1
Project Name.:	Marlin Bay Drive		Parcel INF-04				Termin	ology and Sc	lution	
Boring No:	B-04		Date 11/1/2022			Ksat : Saturated hydraulic conductivity				
Investigators.:	BND		File Name:			Q: Stea	ady-state rate	of water flow	into the soil	
Boring Depth.:	2'		WCU Base. Ht. h:	15.0	cm	H: Con	stant height o	of water in bor	ehole	
Boring Dia:	9.5	cm	WCU Susp. Ht. S:	15.0	cm	r: Rad	ius of cylindri	cal borehole		
Boring Rad. (r):	4.76	cm	Const. Wtr. Ht. H:	30.0	cm	Ksat = Q[s	inh-1(H/r) - (r	² /H ² +1) ^{.5} + r/H] / (2piH ²) [G	Blover, R. E
VOLUME	Volume Out	TIME	Elapse	d Time	Flow Rate Q		Ksat	Equivalent V	alues	
(ml)	(ml) [a]	(hr:min:sec a/p)	(hr:min:sec)	(min) [b]	(ml/min) [a/b]	(cm/min)	(cm/sec)	(cm/day)	(in/hr)	(ft/day)
3000		9:30:15 AM								
2500	500	9:30:59 AM	0:00:44	0.73	681.82	0.203	3.39E-03	292.7	4.802	9.60
2000	500	9:31:45 AM	0:00:46	0.77	652.17	0.194	3.24E-03	280.0	4.593	9.19
1500	500	9:32:30 AM	0:00:45	0.75	666.67	0.199	3.31E-03	286.2	4.695	9.39
1000	500	9:33:05 AM	0:00:35	0.58	857.14	0.256	4.26E-03	368.0	6.037	12.07
500	500	9:33:48 AM	0:00:43	0.72	697.67	0.208	3.47E-03	299.5	4.914	9.83
0	500	9:34:28 AM	0:00:40	0.67	750.00	0.224	3.73E-03	322.0	5.282	10.56
Natural Moisture:	2.9%	Init. Satur.Time:	9:24:10 AM	ESTIMATED FIEL	.D Ksat:	Notes:	3.82E-03		5.411	
Texture/Classif:	SP-SM	Consistency:		Bedrock Dpth: N/A				Ksat is determing tresults for final		
Structure/Fabric:		Water Tbl. Dpth:		_	N/A					
ksatWKS_3.xls			Jol	nnson Permeameter tm					Rev. 06/	/16/05

Ocean Park Subdivision
Virginia Beach, VA
Project Narrative and Calculations
Timmons Project Number: 50568
July 3, 2025

Appendix B – Erosion and Sediment Control Calculations

Project:
Project No.:
Date:
Calculated By:

Ocean Park 50568 4/7/2025 J. Kim

SEDIMENT TRAP DESIGN

Drainage Area to Sediment Trap
(Acres)
2.75

Wet Storage (67c.y./Ac.)					
(Cubic Yards) (Cubic Feet					
184.25 4974.75					

Dry Storage (67c.y./Ac.)					
(Cubic Yards)		(Cubic Feet)			
184.25 4974.75					

Sediment Trap Volume:

			Area	Volume	Volume	Sum Volume	e Sum Volume	
	Elevation	<u>Depth</u>	(sq. ft.)	<u>(cu. ft.)</u>	(cu. yd.)	<u>(cu. ft.)</u>	<u>(cu. yd.)</u>	
	-1.0	0	1848	0	0	0	0	
	0.0	1	2419	2133.5	79	2134	79	
	1.0	1	3047	2733	101	4867	180	
	2.0	1	3731	3389	126	8256	306	
	3.0	1	4471	4101	152	12357	458	
	3.0	0	4471	0	0	12357	458	
	3.0	0	4471	0	0	12357	458	
	3.0	0	4471	0	0	12357	458	
	3.0	0	4471	0	0	12357	458	
Ele	evation of We	et Storage Vo	lume			=	1.03	
Ele	evation of Dry	y Storage Vo	lume			=	2.41	
Se	diment Clear	out Elevatio	n			=	0.13	
То	p Width of E	mbankment	(H _o = 1.3	38 ft.) (H =	2.38 ft.)	= 2.0	00 feet	
Le	ngth of Aggre	egate Outlet	Weir = 6 ft./ad	cre & (Draina	ge Area)	= 16	.5 feet	

Project:	Ocean Park
Date:	4/7/2025
Designed:	J.K
Channel:	DV 1

(Q=CiA)

Channel Characteristics

Right Sideslope = 3.00 :1 Left Sideslope = 3.00 :1 Base Width = 0.00 ft. Max. Depth = 2.00 ft. TC Channel Slope = 1.03 % 5.00 Mannings n = 0.05

Drainage Area = 1.92 ac. Rational C = 0.60 2-year Intensity = $Q_2 =$ 6.75 in/hr 7.78 cfs 10-year Intesity = 8.56 in/hr $Q_{10} =$ 9.87 cfs

2-Year Storm Velocity Check

Depth of Flow = Velocity (V) = 2.00 fps 1.14 ft. (Mannings Equation) Area = 3.89 sq. ft. 7.20 Wetted Perimeter = Flow (Q) = 7.77ft. Hydraulic Radius = 0.54 ft. (Q=VA)

Conclusion = Adequate

10-Year Storm Capacity Check

Depth of Flow = Velocity (V) = 2.121.24 ft. 4.64 (Mannings Equation) Area = sq. ft. Wetted Perimeter = 7.87 ft. Flow(Q) =9.85 Hydraulic Radius = 0.59 ft. (Q=VA) Free Board = 0.76

Project:	Ocean Park
Date:	4/7/2025
Designed:	J.K
Channel:	DV 2

Channel Characteristics

Right Sideslope = 3.00 :1 Left Sideslope = 3.00 :1 Base Width = 0.00 ft. Max. Depth = 1.00 ft. TC Channel Slope = 0.70 % 5.00 Mannings n = 0.05 Drainage Area = 0.26 ac.

Drainage Area = 0.26 ac.

Rational C = 0.602-year Intensity = 6.75 in/hr 0.2 = 0.05 cfs 0.26 = 0.60 0.26 = 0.

2-Year Storm Velocity Check

Depth of Flow = Velocity (V) = 1.00 fps 0.54 ft. (Mannings Equation) Area = 0.86 sq. ft. 3.39 Wetted Perimeter = Flow (Q) = 0.86ft. cfs Hydraulic Radius = 0.25 ft. (Q=VA)

Conclusion = Adequate

10-Year Storm Capacity Check

Depth of Flow = 0.59 Velocity (V) = 1.06ft. 1.04 (Mannings Equation) Area = sq. ft. Wetted Perimeter = 3.72 ft. Flow(Q) =1.10 Hydraulic Radius = 0.28 ft. (Q=VA) Free Board = 0.41

Project:	Ocean Park
Date:	4/7/2025
Designed:	J.K
Channel:	DV 3

(Q=CiA)

Channel Characteristics

Right Sideslope = 3.00 :1 Left Sideslope = 3.00 :1 Base Width = 0.00 ft. Max. Depth = 1.00 ft. TC Channel Slope = 1.66 % 5.00 Mannings n = 0.05 Drainage Area = 0.19 ac.

Drainage Area = $\begin{array}{c} 0.19 \\ \text{Rational C} \end{array}$ ac. $\begin{array}{c} 2\text{-year Intensity} = \\ 10\text{-year Intesity} = \\ 8.56 \end{array}$ in/hr $\begin{array}{c} Q_2 = \\ Q_{10} = \\ 0.98 \end{array}$ cfs

2-Year Storm Velocity Check

Velocity (V) = 1.42 fps Depth of Flow = 0.48 ft. 0.69 (Mannings Equation) Area = sq. ft. Wetted Perimeter = 3.02 Flow (Q) = 0.98ft. Hydraulic Radius = 0.23 ft. (Q=VA)

Conclusion = Adequate

10-Year Storm Capacity Check

Depth of Flow = Velocity (V) = 1.510.52 ft. 0.82 (Mannings Equation) Area = sq. ft. Wetted Perimeter = 3.30 ft. Flow(Q) =1.23 Hydraulic Radius = 0.25 ft. (Q=VA) Free Board = 0.48

Project:	Ocean Park
Date:	4/7/2025
Designed:	J.K
Channel:	DV 4

(Q=CiA)

Channel Characteristics

Right Sideslope = 3.00 :1 Left Sideslope = 3.00 :1 Base Width = 0.00 ft. Max. Depth = 1.00 ft. TC Channel Slope = 1.51 % 5.00 Mannings n = 0.05

Drainage Area = 0.29 ac. Rational C = 0.60 2-year Intensity = $Q_2 =$ 6.75 in/hr 1.18 cfs 10-year Intesity = 8.56 in/hr $Q_{10} =$ cfs 1.49

2-Year Storm Velocity Check

Velocity (V) = 1.51 fps Depth of Flow = 0.56 ft. 0.94 (Mannings Equation) Area = sq. ft. 3.54 Wetted Perimeter = Flow (Q) = 1.42ft. Hydraulic Radius = 0.27 ft. (Q=VA)

Conclusion = Adequate

10-Year Storm Capacity Check

Depth of Flow = Velocity (V) = 1.600.61 ft. 1.12 (Mannings Equation) Area = sq. ft. Wetted Perimeter = 3.87 ft. Flow(Q) =1.80 Hydraulic Radius = 0.29 ft. (Q=VA) Free Board = 0.39

Project:	Ocean Park
Date:	4/7/2025
Designed:	J.K
Channel:	DV 5

(Q=CiA)

Channel Characteristics

Right Sideslope = 3.00 :1 Left Sideslope = 3.00 :1 Base Width = 2.00 ft. Max. Depth = 1.70 ft. TC Channel Slope = 0.50 % 5.00 Mannings n = 0.05

Drainage Area = 2.11 ac. Rational C = 0.60 2-year Intensity = $Q_2 =$ 6.75 in/hr 8.55 cfs 10-year Intesity = 8.56 in/hr $Q_{10} =$ 10.84 cfs

2-Year Storm Velocity Check

Velocity (V) = 1.64 fps Depth of Flow = 1.18 ft. (Mannings Equation) Area = 6.52 sq. ft. Flow (Q) = 10.70 cfs Wetted Perimeter = 9.45 ft. Hydraulic Radius = 0.69 ft. (Q=VA)

Conclusion = Adequate

10-Year Storm Capacity Check

Depth of Flow = Velocity (V) = 1.731.29 ft. 7.55 (Mannings Equation) Area = sq. ft. Flow (Q) = 13.04 cfs Wetted Perimeter = 10.15 ft. Hydraulic Radius = 0.74 ft. (Q=VA) Free Board = 0.41

DIVERSION CHANNEL ADEQUACY - Summary

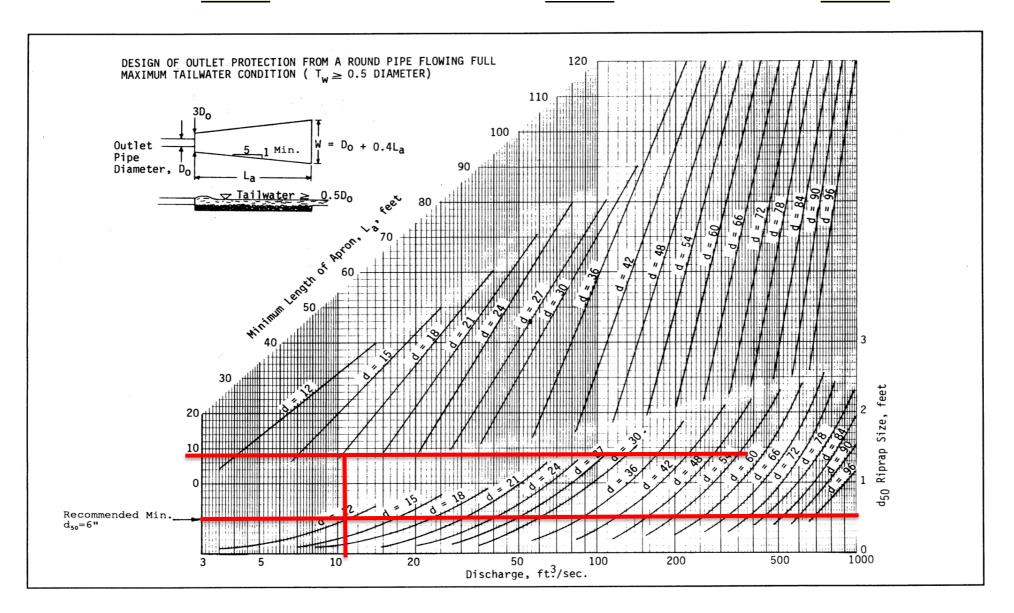
Project:	Ocean Park
Date:	4/7/2025
Designed:	J.K

		Channel Characteristics						
Channel Name	Right Side Slope	Left Side Slope	Bottom Width (ft)	Max. Depth (ft)	Channel Slope	Drainage Area (ac)	Q ₂ (cfs)	Q ₁₀ (cfs)
DV 1	3:1	3:1	0.00	2.00	1.03%	1.92	7.78	9.87
DV 2	3:1	3:1	0.00	1.00	0.70%	0.26	1.05	1.34
DV 3	3:1	3:1	0.00	1.00	1.66%	0.19	0.77	0.98
DV 4	3:1	3:1	0.00	1.00	1.51%	0.29	1.18	1.49
DV 5	3:1	3:1	2.00	1.70	0.50%	2.11	8.55	10.84

BARE SOIL CONDITION

Mannings n = 0.05, Runoff Coefficient = 0.6

•	2-Year Check					10-Year Check								
Channel Name	Flow Depth (ft)	Cross- Section Area (sq.ft.)	Wetted Perimeter (ft)	Hydraulic Radius (ft)	Velocity (fps)	Flowrate Check (cfs)	Flow Depth (ft)	Cross- Section Area (sq.ft.)	Wetted Perimeter (ft)	Hydraulic Radius (ft)	Velocity (fps)	Flowrate Check (cfs)	Free Board (ft)	Free Board Check
DV 1	1.14	3.89	7.20	0.54	2.00	7.77	1.24	4.64	7.87	0.59	2.12	9.85	0.76	OK
DV 2	0.54	0.86	3.39	0.25	1.00	0.86	0.59	1.04	3.72	0.28	1.06	1.10	0.41	OK
DV 3	0.48	0.69	3.02	0.23	1.42	0.98	0.52	0.82	3.30	0.25	1.51	1.23	0.48	OK
DV 4	0.56	0.94	3.54	0.27	1.51	1.42	0.61	1.12	3.87	0.29	1.60	1.80	0.39	OK
DV 5	1.18	6.52	9.45	0.69	1.64	10.70	1.29	7.55	10.15	0.74	1.73	13.04	0.41	OK



Outlet Protection

DVST1

 Project:
 OCEAN PARK
 Date:
 4/7/2025
 Designed:
 JK

Pipe Diameter = 24 in Discharge (Q) = 10.84 cfs Width at Outlet $(3D_0) = 6$ ft Width at Outlet (W) = 10 ft Length (La) = $\frac{9}{10}$ ft Riprap size (d₅₀) = $\frac{9}{100}$ ft

Ocean Park Subdivision Virginia Beach, VA Project Narrative and Calculations Timmons Project Number: 50568 July 3, 2025

Appendix C – Stormwater Management Calculations

DEQ Virginia Runoff Reduction Method Re-Development Compliance Spreadsheet - Version 4.1 CLEAR ALL Project Name: Ocean Park Subdivision Date: 4/10/2025 4/10/2025 Linear Development Project? No Site Information Post-Development Project (Treatment Volume and Loads) Enter Total Disturbed Area (acres) → 3.13 Check: BMP Design Specifications List: 2024 Stds & Specs 20% 2.1 Linear project? The site's net increase in impervious cover (acres) is: Post-Development TP Load Reduction for Site (lb/yr): Land cover areas entered correctly? 1.41 Total disturbed area entered? Pre-ReDevelopment Land Cover (acres) Forest (acres) -- undisturbed, protected forest or reforested land Mixed Open (acres) -- undisturbed/infrequently maintained grass or shrub land Managed Turl (acres) -- disturbed, graded for yards or other turf to be mowed/managed 2.20 2.20 0.82 0.82 0.11 0.11 3.13 Post-Development Land Cover (acres) Totals A Soils B Soils C Soils D Soils Forest/Open Space (acres) — undisturbed, protected forest or reforested land Mixed Open (acres) — undisturbed/infrequently maintained grass or shrub land Managed Turf (acres) — disturbed, graded for yards other turf to be mowed/managed 0.00 0.00 0.92 0.92

OK.

ок.

	Post-Development Requirement for S	te Area		
	TP Load Reduction Required (lb/yr)	1.41		
		- 1)		
	Nitrogen Loads (Informational	urposes Only)		
Pre-ReDevelopment TN Load (lb/yr)	7.33	Fin	nal Post-Development TN Load 32.23	
LAND COVER SUMMARY PRE-REDEVELOPMENT		LAND COVER SUI	MMARY POST DEVELOPMENT	

2.21

3.13

	Summary-Pre	
Pre-ReDevelopment	Listed	Adjusted ²
Forest Cover (acres)	2.20	0.10
Weighted Rv(forest)	0.02	0.02
Weighted Loading Rate(forest)	0.04	0.04
% Forest	70%	10%
Mixed Open Cover (acres)	0.00	0.00
Weighted Rv(mixed)	0.00	0.00
Weighted Loading Rate(mixed)	0.00	0.00
% Mixed Open	0%	0%
Managed Turf Cover (acres)	0.82	0.82
Weighted Rv(turf)	0.15	0.15
Weighted Loading Rate(turf)	0.51	0.51
% Managed Turf	26%	80%
Impervious Cover (acres)	0.11	0.11
Rv(impervious)	0.95	0.95
Weighted Loading Rate(impervious)	0.86	0.86
% Impervious	4%	11%
Total Site Area (acres)	3.13	1.03
Site Rv	0.09	0.22
Treatment Volume	and Nutrient Load	
Pre-ReDevelopment Treatment Volume (acre-ft)	0.0226	0.0191
Pre-ReDevelopment Treatment Volume (cubic feet)	986	833
Pre-ReDevelopment TP Load (lb/yr)	0.60	0.52
Pre-ReDevelopment TP Load per acre (lb/acre/yr)	0.19	0.50
Baseline TP Load (lb/yr) bs/acre/yr applied to pre-redevelopment area excl for new impervious cover)	0.27	

2.21

Area Check

mpervious Cover (acres)

Adjusted Land Cover Summary: Pre ReDevelopment land cover minus pervious land cover (forest, mixed open or managed turf) acreage proposed for new impervious cover.

djusted total acreage is consistent with Past-ReDevelopment acreage (minus acreage of new impervious over).

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	Weig Wgt.	Post-ReDevelopme t Cover (acres) hted Rv(forest) d. Rate(forest) % Forest			Land Cover Sum Post-Development N	
0.00 0.00 0.00 0% 0.00	Weig Wgt.	t Cover (acres) hted Rv(forest) Ld. Rate(forest)			Post-Developillent iv	
0.00 0.00 0% 0.00	Weig Wgt.	hted Rv(forest) Ld. Rate(forest)	0.00			
0.00 0% 0.00	Wgt.	Ld. Rate(forest)				
0% 0.00 0.00	Mixed C		0.00			
0.00	Mixed C		0.00			
0.00						
	Weig	pen Cover (acres)	0.00			
0.00		hted Rv(mixed)	0.00			
	Wgt.	Ld. Rate(mixed)	0.00			
0%	%	Mixed Open	0%			
0.92	Mana	ged Turf Cover (acres)	0.92			
0.15			0.15			
0.51	Wgt	Ld. Rate(turf)	0.51			
29%			89%			
2.21		(acres)	0.11		(acres)	2.10
0.95	Rv	impervious)	0.95		Rv(impervious)	0.95
0.86	Wgt. L	d. Rate(imperv.)	0.86			
71%			11%			
3.13	Total F	teDev. Site Area (acres)	1.03			
0.71	Re	Dev Site Rv	0.24			
	Treatn	ent Volume and N	lutrient Load			
0.1865		tment Volume	0.0202		Post-Development Treatment Volume (acre-ft)	0.166
					Post-Development Treatment Volume (cubic	
8,122	Trea	teDevelopment tment Volume cubic feet)	880		feet)	7,24
8,122 2.36	Trea (tment Volume	0.56			1.80
	Post-I	tment Volume cubic feet) teDevelopment Load (TP)			feet) Post-Development TP	
	0.15 0.51 29% 2.21 0.95 0.86 71% 3.13 0.71	0.15 Weg 0.51 Wgt 29% Sk N 2.21 O.95 Refer I 0.86 Wgt. Sk N 3.13 Total R 0.71 Reach 0.1865	(acres) (acres)	(acres) (acr	(scress) (scress)	(acres) (acr

Site Results (Water Quality Compliance) VRRM 4.1, 2024

Area Checks	D.A. A	D.A. B	D.A. C	D.A. D	D.A. E	AREA CHECK
FOREST (ac)	0.00	0.00	0.00	0.00	0.00	OK.
MIXED OPEN (ac)	0.00	0.00	0.00	0.00	0.00	OK.
MIXED OPEN AREA TREATED(ac)	0.00	0.00	0.00	0.00	0.00	OK.
MANAGED TURF AREA (ac)	2.23	0.00	0.00	0.00	0.00	AREA EXCEEDED!
MANAGED TURF AREA TREATED (ac)	2.23	0.00	0.00	0.00	0.00	OK.
IMPERVIOUS COVER (ac)	2.39	0.00	0.00	0.00	0.00	AREA EXCEEDED!
IMPERVIOUS COVER TREATED (ac)	2.39	0.00	0.00	0.00	0.00	OK.
AREA CHECK	OK.	OK.	OK.	OK.	OK.	

Site Treatment Volume (ft³) 8,122

Runoff Reduction Volume and TP By Drainage Area

	D.A. A	D.A. B	D.A. C	D.A. D	D.A. E	TOTAL
RUNOFF REDUCTION VOLUME ACHIEVED (ft ³)	0	0	0	0	0	0
TP LOAD AVAILABLE FOR REMOVAL (lb/yr)	3.71	0.00	0.00	0.00	0.00	3.71
TP LOAD REDUCTION ACHIEVED (lb/yr)	1.48	0.00	0.00	0.00	0.00	1.48
TP LOAD REMAINING (lb/yr)	2.23	0.00	0.00	0.00	0.00	2.23
_						
NITROGEN LOAD REDUCTION ACHIEVED (lb/yr)	0.00	0.00	0.00	0.00	0.00	0.00

Total Phosphorus

FINAL POST-DEVELOPMENT TP LOAD (lb/yr)	2.36
TP LOAD REDUCTION REQUIRED (lb/yr)	
TP LOAD REDUCTION ACHIEVED (lb/yr)	X
TP LOAD REMAINING (lb/yr):	X

REMAINING TP LOAD REDUCTION REQUIRED (Ib/yr): CHECK AREAS!

Total Nitrogen (For Information Purposes)

POST-DEVELOPMENT LOAD (lb/yr)	32.23
NITROGEN LOAD REDUCTION ACHIEVED (lb/yr)	0.00
REMAINING POST-DEVELOPMENT NITROGEN LOAD (lb/yr)	32.23

DEQ Virginia Runoff Reduction Method Re-Development Compliance Spreadsheet - Version 4.1

BMP Design Specifications List: 2024 Stds & Specs

Site Summary

Project Title: Ocean Park Subdivision

Date: 45757

Total Disturbed Acreage:	3.13

Site Land Cover Summary

Pre-ReDevelopment Land Cover (acres)

	A soils	B Soils	C Soils	D Soils	Totals	% of Total
Forest (acres)	2.20	0.00	0.00	0.00	2.20	70
Mixed Open (acres)	0.00	0.00	0.00	0.00	0.00	0
Managed Turf (acres)	0.82	0.00	0.00	0.00	0.82	26
Impervious Cover (acres)	0.11	0.00	0.00	0.00	0.11	4
	-				3.13	100

Post-ReDevelopment Land Cover (acres)

	A soils	B Soils	C Soils	D Soils	Totals	% of Total				
Forest (acres)	0.00	0.00	0.00	0.00	0.00	0				
Mixed Open (acres)	0.00	0.00	0.00	0.00	0.00	0				
Managed Turf (acres)	0.92	0.00	0.00	0.00	0.92	29				
Impervious Cover (acres)	2.21	0.00	0.00	0.00 0.00		71				
* Forest/Open Space areas must be protected in	* Forest/Open Space areas must be protected in accordance with the Virginia Runoff Reduction Method									

Site Tv and Land Cover Nutrient Loads

	Final Post-Development (Post-ReDevelopment & New Impervious)	Post- ReDevelopment	Post- Development (New Impervious)	Adjusted Pre- ReDevelopment
Site Rv	0.71	0.24	0.00	0.22
Treatment Volume (ft ³)	8,122	880	7,242	833
TP Load (lb/yr)	2.36	0.56	1.80	0.52

Total TP Load Reduction Required (lb/yr)	1.41	0.15	1.26
--	------	------	------

	Final Post-Development Load (Post-ReDevelopment & New Impervious)	Pre- ReDevelopment
TN Load (lb/yr)	32.23	7.33

Pre- ReDevelopment TP Load per acre (lb/acre/yr)	Final Post-Development TP Load per acre (lb/acre/yr)	Post-ReDevelopment TP Load per acre (lb/acre/yr)
0.50	0.76	0.55

AREA AND CURVE NUMBER COMPUTATIONS

VRRM LAND COVER TABULATION

*Based project site limits of disturbance

Project Name: Ocean Park Subdivision Timmons Group Project No. 50568

Date: 2025-04-10

Calculated By: Kyle Brady

Pre-Development

Point of Analysis	Area	Area		Forest			Mixed Open Space				Managed Turf				Impervious Cover								
	(SF)	(AC)	HSG	SF	Acres	CN ^[1]	HSG	SF	Acres	CN ^[1]	HSG	SF	Acres	CN ^[1]	HSG	SF	Acres	CN ^[1]					
	136,446 3.1 3		Α	95,979	2.20	30	Α	0		34	Α	35,854	0.82	39	Α	4,613	0.11	98					
EXISTING		136,446	126 146	126 116	126 116	126 116	2.42	В	0		55	В	0		59	В	0		61	В	0		98
EXISTING			3.13	С	0		70	С	0		72	С	0		74	С	0		98				
			D	0		77	D	0		79	D	0		80	D	0		98					

Post Development

Point of Analysis	Area	Area		Forest			Mixed Open Space				Managed Turf					Impervious Cover					
	(SF)	(AC)	HSG	SF	Acres	CN ^[1]	HSG	SF	Acres	CN ^[1]	HSG	SF	Acres	CN ^[1]	HSG	SF	Acres	CN ^[1]			
			Α	0		30	Α	0		34	Α	39,977	0.92	39	Α	96,469	2.21	98			
Untreated	136,446	3.13	В	0		55	В	0		59	В	0		61	В	0		98			
Uniteated		3.13	С	0		70	С	0		72	С			74	С			98			
					D	0		77	D	0		79	D	0		80	D	0		98	
			Α	0		30	Α	0		34	Α	0		39	Α	0		98			
TOTAL	136,446 3.13	136 146	136 146	TOTAL 136.446	3 13	В	0		55	В	0		59	В	0		61	В	0		98
IOIAL		3.13	С	0		70	С	0		72	С	•		74	С		•	98			
			D	0		77	D	0		79	D	0		80	D	0		98			

Date: February 11, 2025

To: Kevin Worsham, PE

Project Manager TIMMONS GROUP

From: Amy Staley

Credit Sales Manager

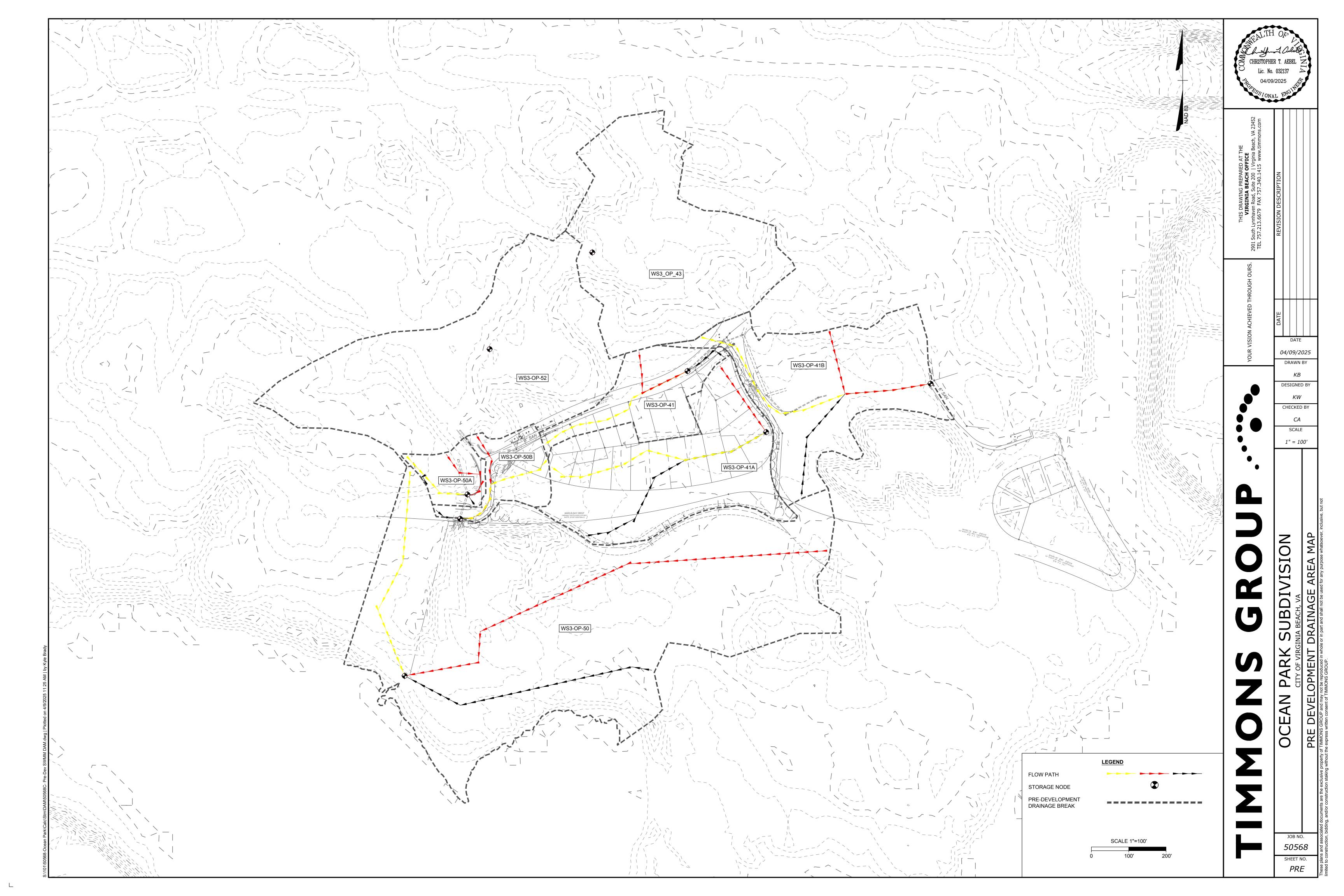
Resource Environmental Solutions

Subject: James River Watershed – Nutrient Credit Availability

Project Reference: Ocean Park, 2.00 Credits Requested; HUC 02080108

This letter is to confirm the availability of 2.00 authorized nutrient credits ("Nutrient Credits") from one of Resource Environmental Solutions' ("RES") James nutrient Bank facilities for use by permit applicants within the James River watershed, including HUC 02080108, to compensate for nutrient loadings in excess of state or local regulations, as per Virginia Code § 62.1-44.15:35 and § 62.1-44.19:14 and Virginia Administrative Code 9 VAC 25-820-10 et seq. These Nutrient Credits are generated and managed under the terms of the Banking Instruments known as the Nansemond Shoals Nutrient Reduction Implementation Plan (NRIP).

Please feel free to contact me if you have any questions.


Sincerely,

Amy Staley

Credit Sales Manager

Any Staly

astaley@res.us | 919.209.1055

Project Name: Ocean Park Timmons Group Project No. 50568

Date: 3/13/2025 Calculated By: KRW

66,664 SF 1.53 AC Subcatchment Area **Subcatchment Impervious** 52,742 SF 1.21 AC

Impervious % 79.1% Storage Invert Elevation -5.0

	Subcatchm	nent: WS3_	OP_41		STORAGE NO	DDE: 03020-022	Curve Name: WS3_OP_41@-5
	Elevation	Depth	Prop. Total	Incremental	Total Storage		Notes
	(NAVD88)		Area	Storage			
Ī	FT	FT	SF	CF	CF		
-	-5.00	0.00	100	0	0		
	3.50	8.50	100	850	850		
	4.00	9.00	100	50	900		
	4.50	9.50	4167	1067	1967		
	5.00	10.00	16431	5150	7116		
	5.50	10.50	23447	9970	17086		
	6.00	11.00	34670	14529	31615		
	6.50	11.50	41235	18976	50591		
	7.00	12.00	49619	22714	73305		
	7.50	12.50	54958	26144	99449		
	8.00	13.00	60847	28951	128400		
	8.50	13.50	66604	31863	160263		
	9.00	14.00	66664	33317	193580		
	19.00	24.00	66664	666640	860220		

Project Name: Ocean Park **Subcatchment Area** 176,206 SF 4.05 AC Timmons Group Project No. 50568 **Subcatchment Impervious** 0.30 AC 13,126 SF

Date: 2/17/2025 Impervious % 7.4% Calculated By: KRW Storage Invert Elevation -5.0

Subcatchm	ent: WS3_	OP_41A		STORAGE NO	DDE: 03020-022A	Curve Name: WS3_OP_41A@-5
Elevation (NAVD88)	Depth	Prop. Total Area	Incremental Storage	Total Storage		Notes
FT	FT	SF	CF	CF		
-5.00	0.00	100	0	0		
2.00	7.00	100	700	700		
2.50	7.50	201	75	775		
3.00	8.00	2552	688	1464		
3.50	8.50	13563	4029	5492		
4.00	9.00	28616	10545	16037		
4.50	9.50	57887	21626	37663		
5.00	10.00	80547	34609	72271		
5.50	10.50	104573	46280	118551		
6.00	11.00	127984	58139	176691		
6.50	11.50	143754	67935	244625		
7.00	12.00	156613	75092	319717		
7.50	12.50	168712	81331	401048		
8.00	13.00	173013	85431	486479		
8.50	13.50	175200	87053	573533		
9.00	14.00	176206	87852	661384		
19.00	24.00	176206	1762060	2423444		

Project Name: Ocean Park **Subcatchment Area** 168,468 SF 3.87 AC Timmons Group Project No. 50568 **Subcatchment Impervious** 0.89 AC 38,690 SF

Date: 3/13/2025 Impervious % 23% Calculated By: KRW Storage Invert Elevation -5.0

Subcatchm	nent: WS3_	OP_41B		STORAGE NO	DDE: 03020-050	Curve Name: WS3_OP_41B@-5
Elevation (NAVD88)	Depth	Prop. Total Area	Incremental Storage	Total Storage		Notes
FT	FT	SF	CF	CF		
-5.00	0.00	100	0	0		
2.50	7.50	100	750	750		
3.00	8.00	572	168	918		
3.50	8.50	31858	8108	9026		
4.00	9.00	78897	27689	36714		
4.50	9.50	108482	46845	83559		
5.00	10.00	121571	57513	141072		
5.50	10.50	130234	62951	204024		
6.00	11.00	141930	68041	272065		
6.50	11.50	156239	74542	346607		
7.00	12.00	162456	79674	426281		
7.50	12.50	165799	82064	508344		
8.00	13.00	167521	83330	591674		
8.50	13.50	168200	83930	675605		
9.00	14.00	168468	84167	759772		
19.00	24.00	168468	1684680	2444452		

Project Name: Ocean Park **Subcatchment Area** 229,004 SF 5.26 AC Timmons Group Project No. 50568 **Subcatchment Impervious** 2.76 AC 120,253 SF

Date: 3/13/2025 Impervious % 52.5% Calculated By: KRW Storage Invert Elevation -10.0

Subcatchm	nent: WS3_	OP_43		STORAGE NO	DDE: 03020-046	Curve Name: WS3_OP_43@-10
Elevation (NAVD88)	Depth	Prop. Total Area	Incremental Storage	Total Storage		Notes
FT	FT	SF	CF	CF		
-10.00	0.00	100	0	0		
1.50	11.50	100	1150	1150		
2.00	12.00	3504	901	2051		
2.50	12.50	14054	4390	6441		
3.00	13.00	49576	15908	22348		
3.50	13.50	89422	34750	57098		
4.00	14.00	110189	49903	107000		
4.50	14.50	124581	58693	165693		
5.00	15.00	141351	66483	232176		
5.50	15.50	156395	74437	306612		
6.00	16.00	171914	82077	388690		
6.50	16.50	189499	90353	479043		
7.00	17.00	208014	99378	578421		
7.50	17.50	216133	106037	684458		
8.00	18.00	223053	109797	794254		
8.50	18.50	228452	112876	907131		
9.00	19.00	229004	114364	1021495		
19.00	29.00	229004	2290040	3311535		

Project Name: Ocean Park **Subcatchment Area** 613,714 SF 14.09 AC Timmons Group Project No. 50568 **Subcatchment Impervious** 86,344 SF 1.98 AC

Date: 2/17/2025 Impervious % 14.1% Calculated By: KRW Storage Invert Elevation -5.0

ubcatchm	nent: WS3_	OP_50		STORAGE NODE: 03020-306		Curve Name: WS3_OP_50@
Elevation NAVD88)	Depth	Prop. Total Area	Incremental Storage	Total Storage		Notes
FT	FT	SF	CF	CF		
-5.00	0.00	100	0	0		
-0.50	4.50	100	450	450		
0.00	5.00	2287	597	1047		
0.50	5.50	16576	4716	5763		
1.00	6.00	32057	12158	17921		
1.50	6.50	46870	19732	37653		
2.00	7.00	79928	31700	69352		
2.50	7.50	124490	51105	120457		
3.00	8.00	184096	77147	197603		
3.50	8.50	238203	105575	303178		
4.00	9.00	289107	131828	435005		
4.50	9.50	380101	167302	602307		
5.00	10.00	460030	210033	812340		
5.50	10.50	504188	241055	1053395		
6.00	11.00	530314	258626	1312020		
6.50	11.50	551656	270493	1582513		
7.00	12.00	574384	281510	1864023		
7.50	12.50	593393	291944	2155967		
8.00	13.00	605008	299600	2455567		
8.50	13.50	610242	303813	2759380		
9.00	14.00	611388	305408	3064787		
9.50	14.50	611986	305844	3370631		
10.00	15.00	613196	306296	3676926		
10.50	15.50	613714	306728	3983654		
20.50	25.50	613714	6137140	10120794		

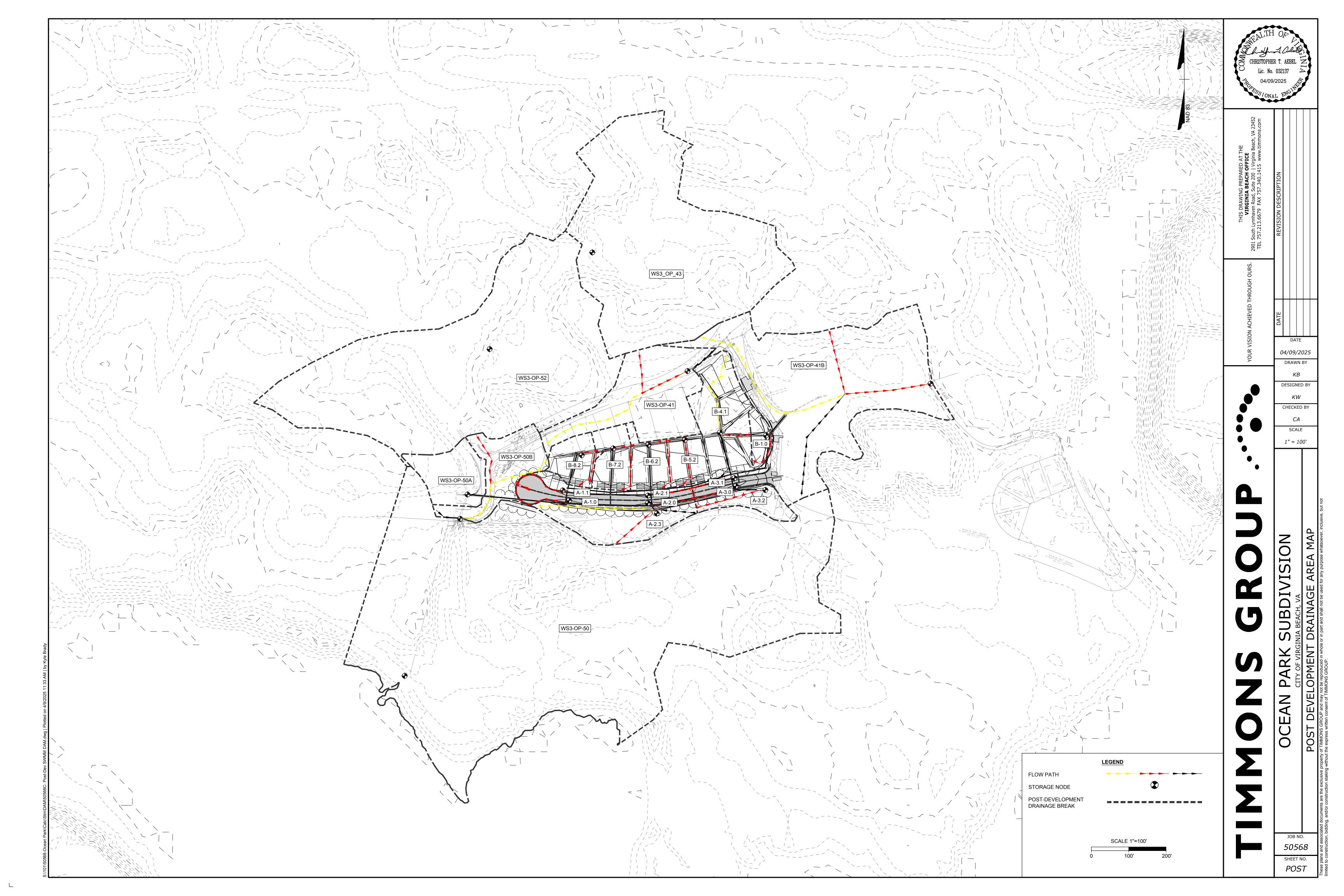
Project Name: Ocean Park **Subcatchment Area** 25,565 SF 0.59 AC Timmons Group Project No. 50568 **Subcatchment Impervious** 8,223 SF 0.19 AC

Date: 03/13/2025 Impervious % 32.2% Calculated By: KRW Storage Invert Elevation -5.0

Subcatchm	nent: WS3_	OP_50A		STORAGE NO	DDE: 03020-626	Curve Name: WS3_OP_50A@-5
Elevation (NAVD88)	Depth	Prop. Total Area	Incremental Storage	Total Storage		Notes
FT	FT	SF	CF	CF		
-5.00	0.00	100	0	0		
4.50	9.50	100	950	950		
5.00	10.00	121	55	1005		
5.50	10.50	1436	389	1395		
6.00	11.00	5796	1808	3203		
6.50	11.50	9698	3874	7076		
7.00	12.00	12069	5442	12518		
7.50	12.50	13904	6493	19011		
8.00	13.00	15564	7367	26378		
8.50	13.50	17909	8368	34746		
9.00	14.00	22605	10129	44875		
9.50	14.50	23959	11641	56516		
10.00	15.00	24848	12202	68718		
10.50	15.50	25544	12598	81316		
11.00	16.00	25565	12777	94093		
21.00	26.00	25565	255650	349743		

Project Name: Ocean Park **Subcatchment Area** 39,783 SF 0.91 AC Timmons Group Project No. 50568 **Subcatchment Impervious** 0.28 AC 12,007 SF

Date: 03/13/2025 Impervious % 30.2% Calculated By: KRW Storage Invert Elevation -5.0


Subcatchm	ent: WS3_	OP_50B		STORAGE NO	DDE: 03020-624	Curve Name: WS3_OP_50B@-5
Elevation (NAVD88)	Depth	Prop. Total Area	Incremental Storage	Total Storage		Notes
FT	FT	SF	CF	CF		
-5.00	0.00	100	0	0		
3.00	8.00	100	800	800		
3.50	8.50	100	50	850		
4.00	9.00	100	50	900		
4.50	9.50	248	87	987		
5.00	10.00	595	211	1198		
5.50	10.50	1848	611	1809		
6.00	11.00	11761	3402	5211		
6.50	11.50	18557	7580	12790		
7.00	12.00	22921	10370	23160		
7.50	12.50	28523	12861	36021		
8.00	13.00	32922	15361	51382		
8.50	13.50	37871	17698	69080		
9.00	14.00	39679	19388	88468		
9.50	14.50	39783	19866	108333		
19.50	24.50	39783	397830	506163		

Project Name: Ocean Park **Subcatchment Area** 294,930 SF 6.77 AC Timmons Group Project No. 50568 **Subcatchment Impervious** 166,177 SF 3.81 AC

Date: 2/17/2025 Impervious % 56.3% Calculated By: KRW Storage Invert Elevation -5.0

Subcatchm	nent: WS3_	OP_52		STORAGE NO	DDE: 03020-638	Curve Name: WS3_OP_52@-5
Elevation (NAVD88)	Depth	Prop. Total Area	Incremental Storage	Total Storage		Notes
FT	FT	SF	CF	CF		
-5.00	0.00	100	0	0		
2.00	7.00	100	700	700		
2.50	7.50	1794	474	1174		
3.00	8.00	13205	3750	4923		
3.50	8.50	40450	13414	18337		
4.00	9.00	61100	25388	43725		
4.50	9.50	72724	33456	77181		
5.00	10.00	84157	39220	116401		
5.50	10.50	102825	46746	163146		
6.00	11.00	128287	57778	220924		
6.50	11.50	159576	71966	292890		
7.00	12.00	187568	86786	379676		
7.50	12.50	202419	97497	477173		
8.00	13.00	213488	103977	581150		
8.50	13.50	222578	109017	690166		
9.00	14.00	233183	113940	804106		
9.50	14.50	246155	119835	923941		
10.00	15.00	260689	126711	1050652		
10.50	15.50	277274	134491	1185143		
11.00	16.00	289218	141623	1326766		
11.50	16.50	291765	145246	1472011		
12.00	17.00	293679	146361	1618372		
12.50	17.50	294243	146981	1765353		
13.00	18.00	294651	147224	1912576		
13.50	18.50	294930	147395	2059972		
23.50	28.50	294930	2949300	5009272		

Project Name: Ocean Park **Subcatchment Area** 63,090 SF 1.45 AC Timmons Group Project No. 50568 **Subcatchment Impervious** 1.21 AC 52,756 SF

Date: 3/6/2025 Impervious % 83.6% Calculated By: KRW Storage Invert Elevation -5.0

Subcatchm	nent: WS3_	OP_41		STORAGE NO	DE: 03020-022	Curve Name: WS3_OP_41@-5
Elevation (NAVD88)	Depth	Prop. Total Area	Incremental Storage	Total Storage		Notes
FT	FT	SF	CF	CF		
-5.00	0.00	100	0	0		
3.50	8.50	100	850	850		
4.00	9.00	170	68	918		
4.50	9.50	5824	1499	2416		
5.00	10.00	18739	6141	8557		
5.50	10.50	25132	10968	19525		
6.00	11.00	35468	15150	34675		
6.50	11.50	40588	19014	53689		
7.00	12.00	46395	21746	75434		
7.50	12.50	51404	24450	99884		
8.00	13.00	57218	27156	127040		
8.50	13.50	63054	30068	157108		
9.00	14.00	63090	31536	188644		
19.00	24.00	63090	630900	819544		

Project Name: Ocean Park **Subcatchment Area** 175,079 SF 4.02 AC Timmons Group Project No. 50568 1.01 AC **Subcatchment Impervious** 44,028 SF

Date: 3/6/2025 Impervious % 25.1% Calculated By: KRW Storage Invert Elevation -5.0

Subcatchm	nent: WS3_	OP_41B		STORAGE NO	DDE: 03000-050	Curve Name: WS3_OP_41B@-5
Elevation	Depth	Prop. Total	Incremental	Total Storage		Notes
(NAVD88)		Area	Storage			
FT	FT	SF	CF	CF		
-5.00	0.00	100	0	0		
2.50	7.50	100	750	750		
3.00	8.00	572	168	918		
3.50	8.50	31858	8108	9026		
4.00	9.00	78933	27698	36723		
4.50	9.50	109060	46998	83722		
5.00	10.00	123182	58061	141782		
5.50	10.50	132783	63991	205773		
6.00	11.00	145281	69516	275289		
6.50	11.50	160481	76441	351730		
7.00	12.00	168601	82271	434000		
7.50	12.50	172449	85263	519263		
8.00	13.00	174171	86655	605918		
8.50	13.50	174850	87255	693173		
9.00	14.00	175079	87482	780655		
19.00	24.00	175079	1750790	2531445		

Project Name: Ocean Park **Subcatchment Area** 32,143 SF 0.74 AC Timmons Group Project No. 50568 **Subcatchment Impervious** 12,108 SF 0.28 AC

3/6/2025 Date: Impervious % 37.7% Calculated By: KRW **Storage Invert Elevation** -5.0

Subcatchm	nent: WS3_	OP_50B		STORAGE NO	DDE: 03020-624	Curve Name: WS3_OP_50B@-5
Elevation (NAVD88)	Depth	Prop. Total	Incremental	Total Storage		Notes
` ′		Area	Storage	OF.		
FT	FT	SF	CF	CF		
-5.00	0.00	100	0	0		
3.00	8.00	100	800	800		
3.50	8.50	100	50	850		
4.00	9.00	100	50	900		
4.50	9.50	248	87	987		
5.00	10.00	595	211	1198		
5.50	10.50	1848	611	1809		
6.00	11.00	11766	3404	5212		
6.50	11.50	18533	7575	12787		
7.00	12.00	22530	10266	23053		
7.50	12.50	24414	11736	34789		
8.00	13.00	26998	12853	47642		
8.50	13.50	30511	14377	62019		
9.00	14.00	32031	15636	77654		
9.50	14.50	32143	16044	93698		
19.50	24.50	32143	321430			

Project Name: Ocean Park **Subcatchment Area** 5,449 SF 0.13 AC Timmons Group Project No. 50568 **Subcatchment Impervious** 5,449 SF 0.13 AC

Date: 3/6/2025 Impervious % 100.0% Calculated By: KRW Storage Invert Elevation -5.0

Subcatchm	nent: A-1.0			STORAGE NO	DDE: A1.0	Curve Name: A1.0@-5
Elevation (NAVD88)	Depth	Prop. Total Area	Incremental Storage	Total Storage		Notes
FT	FT	SF	CF	CF		
-5.00	0.00	100	0	0		
6.50	11.50	100	1150	1150		
7.00	12.00	631	183	1333		
7.50	12.50	4668	1325	2658		
8.00	13.00	5447	2529	5186		
8.50	13.50	5449	2724	7910		
18.5	23.50	5449	54490	62400		

Project Name: Ocean Park **Subcatchment Area** 9,924 SF 0.23 AC Timmons Group Project No. 50568 0.16 AC **Subcatchment Impervious** 7,049 SF

Date: 3/6/2025 Impervious % 71.0% Calculated By: KRW Storage Invert Elevation -5.0

Subcatchn	nent: A-1.1			STORAGE NO	DDE: A1.1 Curve Name: A1.1@-5
Elevation (NAVD88)	Depth	Prop. Total Area	Incremental Storage	Total Storage	Notes
FT	FT	SF	CF	CF	
-5.00	0.00	100	0	0	
6.50	11.50	100	1150	1150	
7.00	12.00	609	177	1327	
7.50	12.50	6012	1655	2983	
8.00	13.00	9241	3813	6796	
8.50	13.50	9781	4756	11551	
9.00	14.00	9924	4926	16478	
19	24.00	9924	99240	115718	

Project Name: Ocean Park **Subcatchment Area** 3,488 SF 0.08 AC Timmons Group Project No. 50568 0.08 AC **Subcatchment Impervious** 3,488 SF

Date: 3/6/2025 Impervious % 100.0% Calculated By: KRW Storage Invert Elevation -5.0

Subcatchment: A-2.0					STORAGE NO	DDE: A2.0 Curve Name: A2.0@-5
	Elevation (NAVD88)	Depth	Prop. Total Area	Incremental Storage	Total Storage	Notes
	FT	FT	SF	CF	CF	
	-5.00	0.00	100	0	0	
	6.50	11.50	100	1150	1150	
	7.00	12.00	643	186	1336	
	7.50	12.50	3480	1031	2367	
	8.00	13.00	3488	1742	4109	
	18.00	23.00	3488	34880	38989	

Project Name: Ocean Park **Subcatchment Area** 5,849 SF 0.13 AC Timmons Group Project No. 50568 **Subcatchment Impervious** 4,317 SF 0.10 AC

Date: 3/6/2025 Impervious % 73.8% Calculated By: KRW Storage Invert Elevation -5.0

Subcatchn	nent: A-2.1			STORAGE NO	DDE: A2.1
Elevation (NAVD88)	Depth	Prop. Total Area	Incremental Storage	Total Storage	Notes
FT	FT	SF	CF	CF	
-5.00	0.00	100	0	0	
6.50	11.50	100	1150	1150	
7.00	12.00	620	180	1330	
7.50	12.50	4893	1378	2708	
8.00	13.00	5849	2686	5394	
18.00	23.00	5849	58490	63884	

Project Name: Ocean Park **Subcatchment Area** 32,213 SF 0.74 AC Timmons Group Project No. 50568 **Subcatchment Impervious** 0.05 AC 2,358 SF

Date: 3/6/2025 Impervious % 7.3% Calculated By: KRW Storage Invert Elevation -5.0

Subcatchn	nent: A-2.2			STORAGE NODE: A2.2		Curve Name: A2.2@-5
Elevation (NAVD88)	Depth	Prop. Total Area	Incremental Storage	Total Storage		Notes
FT	FT	SF	CF	CF		
-5.00	0.00	100	0	0		
5.00	10.00	334	2170	2170		
5.50	10.50	5026	1340	3510		
6.00	11.00	13466	4623	8133		
6.50	11.50	19972	8360	16493		
7.00	12.00	23995	10992	27484		
7.50	12.50	31429	13856	41340		
8.00	13.00	32213	15911	57251		
18.00	23.00	32213	322130	379381		

Project Name: Ocean Park **Subcatchment Area** 1,953 SF 0.04 AC Timmons Group Project No. 50568 0.04 AC **Subcatchment Impervious** 1,953 SF

Date: 3/6/2025 Impervious % 100.0% Calculated By: KRW Storage Invert Elevation -5.0

Subcatchn	nent: A-3.0			STORAGE NO	ODE: A3.0 Curve Name: A3.0@-5
Elevation (NAVD88)	Depth	Prop. Total Area	Incremental Storage	Total Storage	Notes
FT	FT	SF	CF	CF	
-5.00	0.00	100	0	0	
6.50	11.50	100	1150	1150	
7.00	12.00	461	140	1290	
7.50	12.50	1948	602	1893	
8.00	13.00	1953	975	2868	
18.00	23.00	1953	19530	22398	

Project Name: Ocean Park **Subcatchment Area** 3,171 SF 0.07 AC Timmons Group Project No. 50568 **Subcatchment Impervious** 0.05 AC 2,342 SF

Date: 3/6/2025 Impervious % 73.9% Calculated By: KRW Storage Invert Elevation -5.0

Subcatchn	nent: A-3.1			STORAGE NO	ODE: A3.1
Elevation (NAVD88)	Depth	Prop. Total Area	Incremental Storage	Total Storage	Notes
FT	FT	SF	CF	CF	
-5.00	0.00	100	0	0	
6.50	11.50	100	1150	1150	
7.00	12.00	470	143	1293	
7.50	12.50	2791	815	2108	
8.00	13.00	3171	1491	3598	
18.00	23.00	3171	31710	35308	

Project Name: Ocean Park **Subcatchment Area** 13,986 SF 0.32 AC Timmons Group Project No. 50568 0.03 AC **Subcatchment Impervious** 1,235 SF

Date: 3/6/2025 Impervious % 8.8% Calculated By: KRW Storage Invert Elevation -5.0

Subcatchm	nent: A-3.2			STORAGE NO	DDE: A3.2	Curve Name: A3.2@-5	
Elevation (NAVD88)	Depth	Prop. Total Area	Incremental Storage	Total Storage		Notes	
FT	FT	SF	CF	CF			
-5.00	0.00	100	0	0			
3.50	8.50	100	850	850			
4.00	9.00	406	127	977			
4.50	9.50	4986	1348	2325			
5.00	10.00	10257	3811	6135			
5.50	10.50	12936	5798	11934			
6.00	11.00	13287	6556	18489			
6.50	11.50	13521	6702	25191			
7.00	12.00	13738	6815	32006			
7.50	12.50	13981	6930	38936			
8.00	13.00	13986	6992	45928			
18.00	23.00	13986	139860	185788			

Project Name: Ocean Park **Subcatchment Area** 7,149 SF 0.16 AC Timmons Group Project No. 50568 **Subcatchment Impervious** 5,362 SF 0.12 AC

Date: 3/6/2025 Impervious % 75.0% Calculated By: KRW Storage Invert Elevation -5.0

Subcatchn	nent: ST-B ²	1.0		STORAGE NODE: B1.0		Curve Name: B1.0@-5
Elevation (NAVD88)	Depth	Prop. Total Area	Incremental Storage	Total Storage		Notes
FT	FT	SF	CF	CF		
-5.00	0.00	100	0	0		
3.00	8.00	100	800	800		
3.50	8.50	100	50	850		
4.00	9.00	341	110	960		
4.50	9.50	1064	351	1312		
5.00	10.00	1985	762	2074		
5.50	10.50	3668	1413	3487		
6.00	11.00	6891	2640	6127		
6.50	11.50	7149	3510	9637		
7.00	12.00	7149	3575	13211		
17.00	22.00	7149	71490	84701		

Project Name: Ocean Park **Subcatchment Area** 39,823 SF 0.91 AC Timmons Group Project No. 50568 **Subcatchment Impervious** 0.60 AC 26,157 SF

Date: 3/6/2025 Impervious % 65.7% Calculated By: KRW Storage Invert Elevation -5.0

Subcatchn	nent: B-4.1			STORAGE NO	DE: B4.1	Curve Name: B4.1@-5
Elevation (NAVD88)	Depth	Prop. Total Area	Incremental Storage	Total Storage		Notes
FT	FT	SF	CF	CF		
-5.00	0.00	100	0	0		
2.00	7.00	100	700	700		
2.50	7.50	100	50	750		
3.00	8.00	319	105	855		
3.50	8.50	2675	749	1603		
4.00	9.00	4998	1918	3522		
4.50	9.50	7912	3228	6749		
5.00	10.00	10214	4532	11281		
5.50	10.50	16401	6654	17934		
6.00	11.00	25806	10552	28486		
6.50	11.50	33557	14841	43327		
7.00	12.00	38897	18114	61440		
7.50	12.50	39820	19679	81120		
8.00	13.00	39823	19911	101030		
18.00	23.00	39823	398230	499260		

Project Name: Ocean Park **Subcatchment Area** 13,167 SF 0.30 AC Timmons Group Project No. 50568 **Subcatchment Impervious** 9,875 SF 0.23 AC

Date: 3/6/2025 Impervious % 75.0% Calculated By: KRW Storage Invert Elevation -5.0

Subcatchn	nent: B-5.2			STORAGE NO	DDE: B5.2	Curve Name: B5.2@-5
Elevation	Depth	Prop. Total	Incremental	Total Storage		Notes
(NAVD88)		Area	Storage			
FT	FT	SF	CF	CF		
-5.00	0.00	100	0	0		
3.50	8.50	100	850	850		
4.00	9.00	453	138	988		
4.50	9.50	785	310	1298		
5.00	10.00	1002	447	1745		
5.50	10.50	1808	703	2447		
6.00	11.00	5017	1706	4153		
6.50	11.50	8436	3363	7517		
7.00	12.00	11530	4992	12508		
7.50	12.50	12896	6107	18615		
8.00	13.00	13167	6516	25130		
18.00	23.00	13167	131670	156800		

Project Name: Ocean Park **Subcatchment Area** 14,425 SF 0.33 AC Timmons Group Project No. 50568 **Subcatchment Impervious** 10,379 SF 0.24 AC

Date: 3/6/2025 Impervious % 71.9% Calculated By: KRW Storage Invert Elevation -5.0

Subcatchn	nent: B-6.2			STORAGE NO	DDE: B6.2	Curve Name: B6.2@-5
Elevation (NAVD88)	Depth	Prop. Total Area	Incremental Storage	Total Storage		Notes
FT	FT	SF	CF	CF		
-5.00	0.00	100	0	0		
4.00	9.00	100	900	900		
4.50	9.50	629	182	1082		
5.00	10.00	1373	501	1583		
5.50	10.50	2219	898	2481		
6.00	11.00	4213	1608	4089		
6.50	11.50	8796	3252	7341		
7.00	12.00	12868	5416	12757		
7.50	12.50	14394	6816	19573		
8.00	13.00	14425	7205	26777		
18.00	23.00	14425	144250	171027		

Project Name: Ocean Park **Subcatchment Area** 16,049 SF 0.37 AC Timmons Group Project No. 50568 **Subcatchment Impervious** 0.27 AC 11,589 SF

Date: 3/6/2025 Impervious % 72.2% Calculated By: KRW Storage Invert Elevation -5.0

Subcatchn	nent: B-7.2			STORAGE NODE: B7.2		Curve Name: B7.2@-5
Elevation (NAVD88)	Depth	Prop. Total Area	Incremental Storage	Total Storage		Notes
FT	FT	SF	CF	CF		
-5.00	0.00	100	0	0		
4.50	9.50	150	1188	1188		
5.00	10.00	553	176	1363		
5.50	10.50	2304	714	2078		
6.00	11.00	6255	2140	4217		
6.50	11.50	9552	3952	8169		
7.00	12.00	14041	5898	14067		
7.50	12.50	15610	7413	21480		
8.00	13.00	16049	7915	29395		
18.00	23.00	16049	160490	189885		

Project Name: Ocean Park **Subcatchment Area** 14,339 SF 0.33 AC Timmons Group Project No. 50568 **Subcatchment Impervious** 0.24 AC 10,350 SF

Date: 3/6/2025 Impervious % 72.2% Calculated By: KRW Storage Invert Elevation -5.0

Subcatchment: B-8.2				STORAGE NO	DDE: B8.2	Curve Name: B8.2@-5
Elevation (NAVD88)	Depth	Prop. Total Area	Incremental Storage	Total Storage		Notes
FT	FT	SF	CF	CF		
-5.00	0.00	100	0	0		
5.50	10.50	100	1050	1050		
6.00	11.00	703	201	1251		
6.50	11.50	2428	783	2034		
7.00	12.00	5511	1985	4018		
7.50	12.50	9903	3854	7872		
8.00	13.00	12502	5601	13473		
8.50	13.50	14088	6648	20121		
9	14.00	14339	7107	27227		
19	24.00	14339	143390	170617		

Project Name: Ocean Park

Timmons Group Project No. 50568

Date: 4/7/2025 Calculated By: KRW

Storage Invert Elevation 0.0

Subcatchment: B-5.2			STORAGE NO	DDE: B-5.1	Curve	Name: I	BMP1@0		
Elevation (NAVD88)	Depth	Prop. Total Area	Incremental Storage	Total Storage			Notes		
FT	FT	SF	CF	CF					
0	0.00	100	0			Redo	ding Stone	2	
0.11	0.11	100	11	11			aning Otoric		
0.12	0.12	740	4	15		Stone I	Below SH	WT	
1.49	1.49	740	1014				0	Material II	
1.5	1.50	740 813	7	1036	5	easonal High	Ground	vater lable	
1.6 1.7	1.60 1.70	841	78 83						
1.7	1.70	860	85						
1.9	1.90	874	87	1369					
			88						
2	2.00	885							
2.1	2.10	894	89						
2.2	2.20	900	90			Perforated 24" Pipes (4) & Stone			
2.3	2.30	905	90		I				
2.4	2.40	907	91	1816	3				
2.5	2.50	908	91	1907					
2.6	2.60	907	91	1997					
2.7	2.70	905	91	2088					
2.8	2.80	900	90	2178					
2.81	2.81	563	7	2186					
3.3	3.30	549	272	2458					
3.31	3.31	100	3						
16	16.00	100	1269			Above G	round Sto	orage	
10	. 5.55	100	.200	3700					

TIMMONS GROUP YOUR VISION ACHIEVED THROUGH OURS.

Project Name: Ocean Park

Timmons Group Project No. 50568

Date: 4/7/2025

Calculated By: KRW **Storage Invert Elevation** 0.0

ubcatchm	ent: B-6.2			STORAGE NO	DE: B-6.1	Curve Name: BMP2@0
Elevation (NAVD88)	Depth	Prop. Total Area	Incremental Storage	Total Storage		Notes
FT	FT	SF	CF	CF		
0	0.00	100	0	0		Bedding Stone
0.66	0.66	100	66	66		
0.67	0.67	740	4	70		Stone Below SHWT
1.49	1.49	740 740	607	677	0	
1.6	1.50 1.60	813	7 78	684 762	36	easonal High Ground Water Table
1.7	1.70	841	83	845		
1.8	1.80	860	85	930		
1.9	1.90	874	87	1017		
2	2.00	885	88	1104		
2.1	2.10	894	89	1193		
2.2	2.20	900	90	1283		
2.3	2.30	905	90	1373		
2.4	2.40	907	90	1464		
					_	
2.5	2.50	908	91	1555	F	Perforated 24" Pipes (4) & Stone
2.6	2.60	907	91	1645		
2.7	2.70	905	91	1736		
2.8	2.80	900	90	1826		
2.9	2.90	894	90	1916		
3	3.00	885	89	2005		
3.1	3.10	874	88	2093		
3.2	3.20	860	87	2180		
3.3	3.30	841	85	2265		
3.4	3.40	813	83	2347		

PROPOSED

SUBCATCHMENT STORAGE SUMMARY FOR VIRGINIA BEACH SWMM MODEL

Project Name: Ocean Park

Timmons Group Project No. 50568

Date: 4/7/2025

Calculated By: KRW **Storage Invert Elevation** 0.0

Subcatchr	nent: B-6.2			STORAGE NO	DDE: B-6.1 Curve Name: BMP2@0
Elevation (NAVD88)	Depth	Prop. Total Area	Incremental Storage	Total Storage	Notes
FT	FT	SF	CF	CF	
3.45	3.45	740	39	2386	
3.46	3.46	300	5	2391	Perforated 24" Pipes (4) & Stone
3.95	3.95	300	147	2538	
3.96	3.96	100	2	2540	
16	16.00	100	1204	3744	Above Ground Storage

BMP Storage Provided = 1861 CF

TIMMONS GROUP YOUR VISION ACHIEVED THROUGH OURS.

Project Name: Ocean Park

Timmons Group Project No. 50568

Date: 4/7/2025

Calculated By: KRW **Storage Invert Elevation** 0.0

Subcatchm	ent: B-7.2			STORAGE NO	ODE: B-7.1 Curve Name: BMP3@0
Elevation (NAVD88)	Depth	Prop. Total Area	Incremental Storage	Total Storage	Notes
FT	FT	SF	CF	CF	
0	0.00	100	0	0	
0.66	0.66	100	66	66	
0.67	0.67	668	4	70	
1.49	1.49 1.50	668 668	548 7	618 624	
1.6	1.60	741	70	695	
1.7	1.70	769	75	770	
1.8	1.80	788	78	848	
1.9	1.90	802	79	928	
2	2.00	813	81	1008	3
2.1	2.10	822	82	1090	
2.2	2.20	828	83	1173	
2.3	2.30	833	83	1256	
2.4	2.40	835	83	1339	
2.5	2.50	836	84	1423	
2.6	2.60	835	84	1506	1 011014104 21 1 1p00 (1) & 010110
2.7	2.70	833	83	1590	
2.8	2.70	828	83	1673	
2.9	2.90	822	83	1755	
3		813	82	1837	
	3.00				
3.1	3.10	802	81	1918	
3.2	3.20	788	80	1997	
3.3	3.30	769	78	2075	
3.4	3.40	741	76	2150)

Project Name: Ocean Park

Timmons Group Project No. 50568

Date: 4/7/2025

Calculated By: KRW **Storage Invert Elevation** 0.0

Subcatchment: B-7.2				STORAGE NO	ODE: B-7.1 Curve Name: BMP3@0
Elevation (NAVD88)	Depth	Prop. Total Area	Incremental Storage	Total Storage	Notes
FT	FT	SF	CF	CF	
3.5	3.50	668	70	2221	
3.51	3.51	300	5	2226	Perforated 24" Pipes (4) & Stone
4	4.00	300	147	2373	
4.01	4.01	100	2	2375	Above Ground Storage
16	16.00	100	1199	3574	Above Ground Storage

TIMMONS GROUP YOUR VISION ACHIEVED THROUGH OURS.

Project Name: Ocean Park

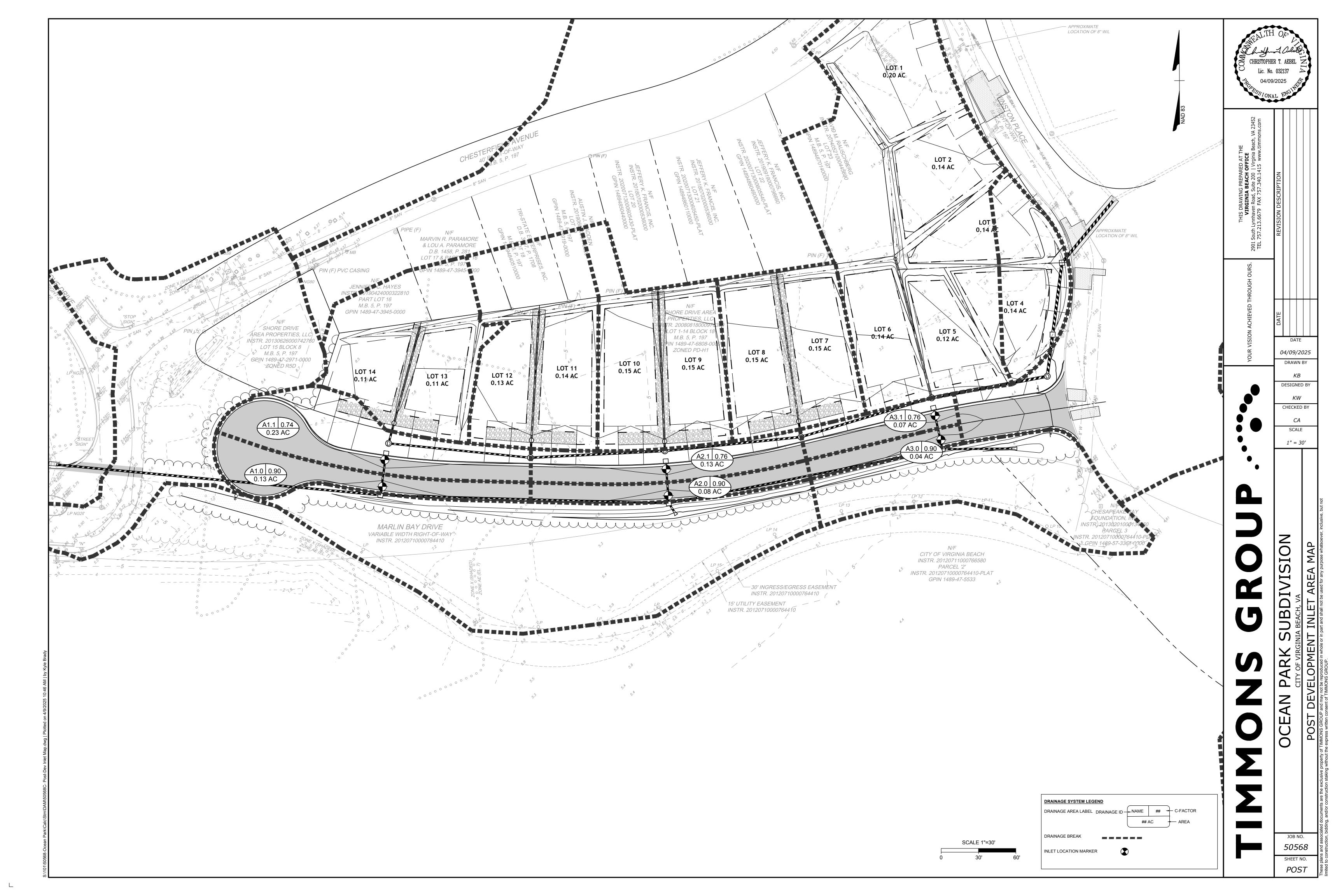
Timmons Group Project No. 50568

Date: 4/7/2025 Calculated By: KRW

Storage Invert Elevation 0.0

Subcatchm	nent: B-8.2			STORAGE NO	DDE: B-8.1	Curve Name: BMP4@0
Elevation (NAVD88)	Depth	Prop. Total Area	Incremental Storage	Total Storage		Notes
FT	FT	SF	CF	CF		
0	0.00	100	0	0		Bedding Stone
0.66	0.66	100	66	66		Dedding Stone
0.67	0.67	600	4	70		Stone Below SHWT
1.49	1.49	600	492	562		
1.5	1.50	600	6	568	Sea	sonal High Ground Water Table
1.6	1.60	685 717	64	632		
1.7 1.8	1.70	739	70 73	702		
	1.80		73	775		
1.9	1.90	756		849		
2	2.00	768	76	926		
2.1	2.10	778	77	1003		
2.2	2.20	785	78	1081		
2.3	2.30	790	79	1160		
2.4	2.40	793	79	1239		
2.5	2.50	794	79	1318	Per	rforated 24" Pipes (4) & Stone
2.6	2.60	793	79	1398	1 3.	
2.7	2.70	790	79	1477		
2.8	2.80	785	79	1556		
2.9	2.90	778	78	1634		
3	3.00	768	77	1711		
3.1	3.10	756	76	1711		
3.2	3.20	739	75	1862		
3.3	3.30	717	73	1935		
3.4	3.40	685	70	2005		

TIMMONS GROUP


Project Name: Ocean Park

Timmons Group Project No. 50568

Date: 4/7/2025 Calculated By: KRW

Storage Invert Elevation 0.0

Subcatchn	nent: B-8.2			STORAGE NO	DDE: B-8.1	Curve Name: BMP4@0	
Elevation (NAVD88)	Depth	Prop. Total Area	Incremental Storage	Total Storage		Notes	
FT	FT	SF	CF	CF			
3.5	3.50	600	64	2069			
3.6	3.60	600	60	2129			
3.7	3.70	600	60	2189			
3.8	3.80	600	60	2249			
3.9	3.90	600	60	2309			
4	4.00	600	60	2369			
4.1	4.10	600	60	2429			
4.2	4.20	600	60	2489			
4.3	4.30	600	60	2549		Perforated 24" Pipes (4) & Stone	
4.4	4.40	600	60	2609			
4.5	4.50	600	60	2669			
4.6	4.60	600	60	2729			
4.7	4.70	600	60	2789			
4.8	4.80	600	60	2849			
4.86	4.86	600	36	2885			
4.87	4.87	332	5	2890			
5.36	5.36	332	163	3052			
5.37	5.37	100	2	3055		Above Ground Storage	
16	16.00	100	1063	4118		Above Ground Storage	

AREA AND C-FACTOR COMPUTATIONS

STORM SEWER SYSTEM

Project Name: Ocean Park Subdivision Timmons Group Project No. 50568

Date: 04/08/2025 Calculated By: KB

Storm	Total Area	Total Area	Forest	Open Sp		Turf &	Mulch Co		Imper	vious Cov		Weighted C
Structure ID	(SF)	(Acres)	(SF)	(Acres)	C ^[1]	(SF)	(Acres)	C ^[1]	(SF)	(Acres)	C ^[1]	moigintou o
A1.0	5,449	0.13	0	0.00	0.30	0	0.00	0.35	5,449	0.13	0.90	0.90
A1.1	9,924	0.23	0	0.00	0.30	2,875	0.07	0.35	7,049	0.16	0.90	0.74
A2.0	3,488	0.08	0	0.00	0.30	0	0.00	0.35	3,488	0.08	0.90	0.90
A2.1	5,849	0.13	0	0.00	0.30	1,532	0.04	0.35	4,317	0.10	0.90	0.76
A3.0	1,953	0.04	0	0.00	0.30	0	0.00	0.35	1,953	0.04	0.90	0.90
A3.1	3,171	0.07	0	0.00	0.30	829	0.02	0.35	2,342	0.05	0.90	0.76

Hydraflow Storm Sewers Extension for Autodesk® Civil 3D® Plan Outfall _ Project File: 50568 - Inlet Spread Calculation.stm Number of lines: 6 Date: 4/8/2025

Inlet Report

Line	Inlet ID	Q =	Q	Q	Q	Junc	Curb Ir	nlet	Gra	ate Inlet				G	utter					Inlet		Вур
No		CIA (cfs)			Byp (cfs)	Туре	Ht (in)	L (ft)	Area (sqft)	L (ft)	W (ft)	So (ft/ft)	W (ft)	Sw (ft/ft)	Sx (ft/ft)	n	Depth (ft)	Spread (ft)		Spread (ft)	Depr (in)	Line No
1	A1.0	0.47	0.00	0.47	0.00	Curb	4.0	2.50	0.00	0.00	0.00	Sag	2.00	0.083	0.021	0.013	0.23	4.93	0.39	4.93	2.0	Off
2	A2.0	0.29	0.00	0.29	0.00	Curb	4.0	2.50	0.00	0.00	0.00	Sag	2.00	0.083	0.021	0.013	0.20	3.57	0.37	3.57	2.0	Off
3	A3.0	0.14	0.00	0.14	0.00	Curb	4.0	2.50	0.00	0.00	0.00	Sag	2.00	0.083	0.021	0.013	0.17	2.25	0.34	2.25	2.0	Off
4	A3.1	0.21	0.00	0.21	0.00	Curb	4.0	2.50	0.00	0.00	0.00	Sag	2.00	0.083	0.021	0.013	0.19	2.91	0.35	2.91	2.0	Off
5	A2.1	0.40	0.00	0.40	0.00	Curb	4.0	2.50	0.00	0.00	0.00	Sag	2.00	0.083	0.021	0.013	0.22	4.40	0.38	4.40	2.0	Off
6	A1.1	0.68	0.00	0.68	0.00	Curb	4.0	2.50	0.00	0.00	0.00	Sag	2.00	0.083	0.021	0.013	0.26	6.33	0.42	6.33	2.0	Off

Project File: 50568 - Inlet Spread Calculation.stm Number of lines: 6 Run Date: 4/8/2025

NOTES: Inlet N-Values = 0.016; Intensity = 4.00 / (Inlet time + 0.10) ^ 0.00; Return period = 3 Yrs.; * Indicates Known Q added. All curb inlets are throat.

CHANNEL PROTECTION COMPLIANCE

FOR VIRGINIA BEACH SWMM MODEL

Project Name: Ocean Park Subdivision

Timmons Group Proj. No.: 50568

Date: 3/27/2025

Point of Analysis #1

Calculated By: KB

This spreadsheet verifies that the conveyance system between the site and the limits of analysis does not experience erosive velocities. Velocities are considered non-erosive if they are less than 10 fps for manmade systems (concrete, corrugated metal, or polyethylene) or 2.5 fps for natural systems. The conduits and velocities listed below were obtained directly from the post development SWMM model for the 2-year, 24-hour storm.

Point of analysis #1 is routed through west property line pipe system to the model outfall.

			S: 2-YEAR, 24-HOUR ST		
Conduit ID	Equiv. Pipe Dia.	Conduit Description	Max. Reported Velocity	Max. Permitted Velocity	Erosive?
Name	(in)		(fps)	(fps)	
A3.2:A3.0	15	RCP	1.59	10.00	NO
A3.1:A3.0	15	RCP	0.31	10.00	NO
A3.0:A2.0	15	RCP	0.98	10.00	NO
A2.1:A2.0	15	RCP	0.52	10.00	NO
A2.0:A1.0	15	RCP	0.45	10.00	NO
A1.1:A1.0	15	RCP	0.84	10.00	NO
A1.0:03020-626	18	RCP	1.20	10.00	NO
03020-626:03020-624	36	RCP	0.52	10.00	NO
03020-624:03020-306	42	RCP	0.58	10.00	NO
03020-306:03020-304	30	HDPE	1.03	10.00	NO

CHANNEL PROTECTION COMPLIANCE

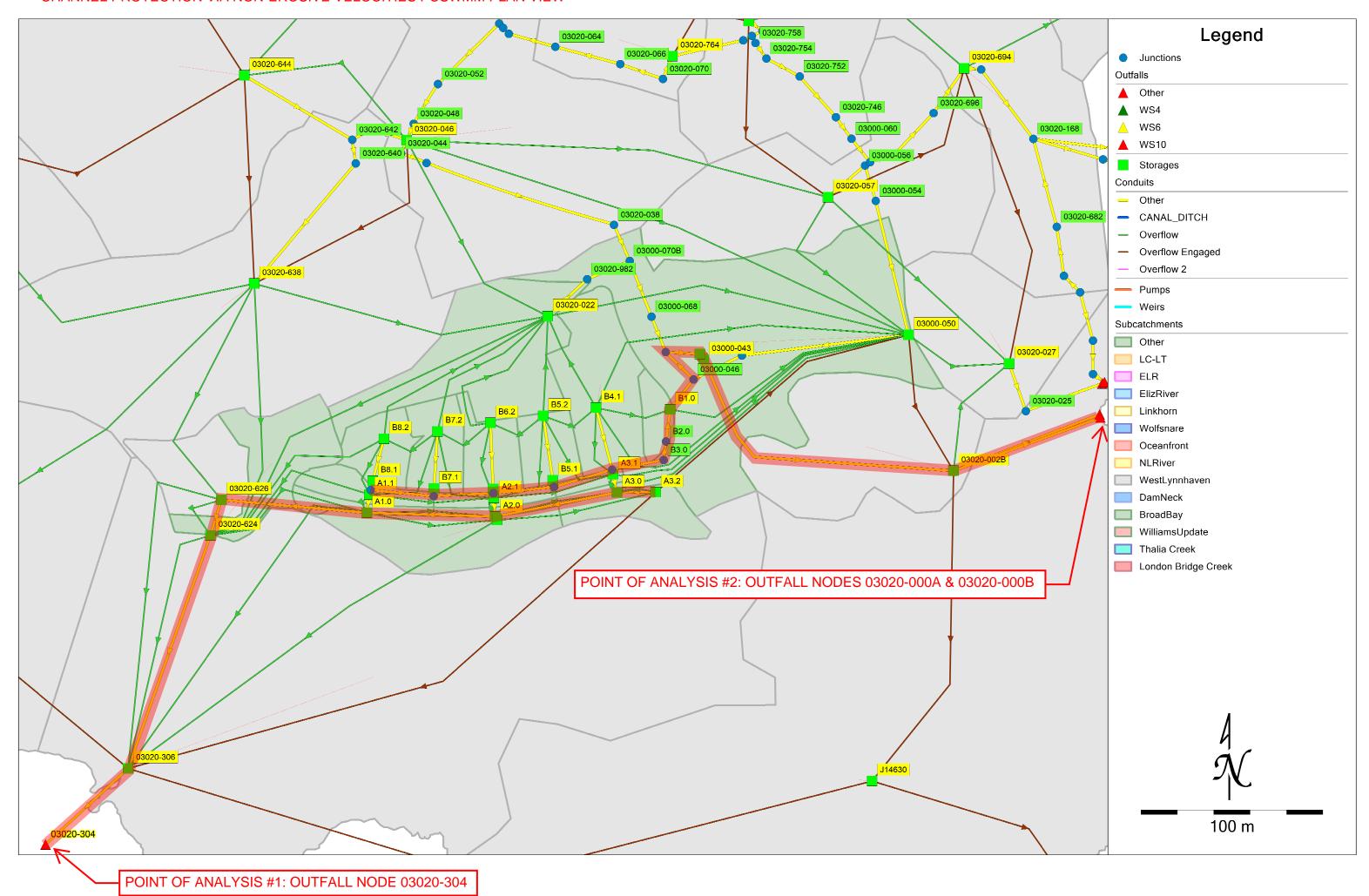
FOR VIRGINIA BEACH SWMM MODEL

Project Name: Ocean Park Subdivision

Timmons Group Proj. No.: 50568 Date: 3/27/2025

Calculated By: KB

Point of Analysis #2


03020-000A 03020-000B

This spreadsheet verifies that the conveyance system between the site and the limits of analysis does not experience erosive velocities. Velocities are considered non-erosive if they are less than 10 fps for manmade systems (concrete, corrugated metal, or polyethylene) or 2.5 fps for natural systems. The conduits and velocities listed below were obtained directly from the post development SWMM model for the 2-year, 24-hour storm.

Point of analysis #2 is routed through eastern property line pipe system to the model outfall.

CON	NDUIT VELO	CITY ANALYSI	S: 2-YEAR, 24-HOUR S	TORM	
Conduit ID	Equiv. Pipe Dia.	Conduit Description	Max. Reported Velocity	Max. Permitted Velocity	Erosive?
Name	(in)		(fps)	(fps)	
B8.0:B7.0	15	Pipe	2.04	10.00	NO
B7.0:B6.0	18	Pipe	1.99	10.00	NO
B6.0:B5.0	18	Pipe	1.59	10.00	NO
B5.0:B4.0	24	Pipe	1.61	10.00	NO
B4.0:B3.0	24	Pipe	2.62	10.00	NO
B3.0:B2.0	24	Pipe	2.47	10.00	NO
B2.0:B1.0	24	Pipe	2.34	10.00	NO
B1.0:03000-046	24	Pipe	3.16	10.00	NO
03000-046:03999-902	36	Pipe	6.42	10.00	NO
03999-902:Pump_Station	72	Pipe	6.78	10.00	NO
030000-046:03020-035	36	Pipe	6.76	10.00	NO
03020-035:03020-000A	54	Pipe	0.86	10.00	NO
03020-035:03020-000B	54	Pipe	0.86	10.00	NO

CHANNEL PROTECTION VIA NON-EROSIVE VELOCITIES PCSWMM PLAN VIEW

SWMM Flood Protection HGL Comparisons

Project Name: Ocean Park Timmons Group Project No. 50568

Date: 03/27/2025 Calculated By: KB

Design Storm Analysis - 10 YR

	<u> </u>					
		POA-	1			
		Post Developme	ent Model			Notes
		Storage N	lodes			
Name	Rim Elev. (ft)	REAL HGL (ft)	Rim Elev. (ft) Actual	Flowline Elevation	Height above/below Flowline	
03020-626	15.55	4.76	5.55	5.05	-0.79	
03020-624	15.66	4.75	5.66	5.16	-0.91	
03020-306	32.172	4.74	2.17	-	2.57	Storage Node 03020-306 is within the floodpla
A1.0	17.17	5.02	7.17	6.67	-1.65	1 .
A1.1	17.17	5.07	7.17	6.67	-1.60	
A2.0	17.19	5.05	7.19	6.69	-1.64	
A2.1	17.19	5.06	7.19	6.69	-1.63	
A3.0	17.18	4.88	7.18	6.68	-1.80	
A3.1	17.18	4.88	7.18	6.68	-1.80	
		POA-	2			
		Post Developme	ent Model			
		Junctio				
Name	Rim Elev. (ft)	REAL HGL (ft)	Rim Elev. (ft) Actual	Height above/below Rim		
03000-046	13.47	2.45	3.47	-1.02		
03999-902	14.59	2.06	4.59	-2.53		
B3.0	15.32	2.63	5.32	-2.69		
B4.0	17.36	2.71	7.36	-4.65	-	
B5.0	17.61	2.78	7.61	-4.83		
B6.0	17.4	2.85	7.40	-4.55		
B7.0	17.59	2.87	7.59	-4.72		
B8.0	17.37	2.89	7.37	-4.48		
		Storage N	lodes			
Name	Rim Elev. (ft)	REAL HGL (ft)	Rim Elev. (ft) Actual	Flowline Elevation	Height above/below Flowline	
			Actual		riowille	

Project Name: Ocean Park Timmons Group Project No. 50568 Date: 04/07/2025 Calculated By: KB

Design Storm Analysis - 10 YR

	10-Year Storm			
	Original Existing Mo	del		
	Junctions			
Name	Rim Elev. (ft)	REAL HGL (ft)	Rim Elev. (ft) Actual	Height above/belo Rim
03000-046	13.76	15.31	3.76	11.55
03000-048	13.11	1.98	3.11	-1.13
03000-050	15.1	2.80	5.10	-2.30
03000-054 03000-056	14.64 14	5.45 6.43	4.64	0.81 2.43
03000-058	13.99	7.28	3.99	3.29
03000-060	13.87	8.09	3.87	4.22
03000-064	13.4	6.89	3.40	3.49
03000-068	34.224	1.61	4.22	-2.61
03000-070B 03020-025	15.37 35.085	1.71 4.70	5.37 5.09	-3.66 -0.39
03020-025	16.06	1.78	6.06	-4.28
03020-044	12.38	1.98	2.38	-0.40
03020-048	32.77	2.21	2.77	-0.56
03020-052	32.962	2.28	2.96	-0.68
03020-054	13.14	2.35	3.14 2.93	-0.79
03020-055	12.93 31.921	2.39	1.93	-0.54 0.94
03020-064	32.283	3.01	2.28	0.73
03020-066	32.377	3.14	2.38	0.76
03020-070	33.003	3.32	3.00	0.32
03020-071	13.61	2.47	3.61	-1.14
03020-072 03020-074	33.05 13.38	2.62 3.07	3.05 3.38	-0.43 -0.31
03020-074	13.38	3.07	3.38	-0.54
03020-070	33,483	4.05	3.48	0.57
03020-092A	13.68	4.11	3.68	0.43
03020-092B	14.36	4.18	4.36	-0.18
03020-168	34.482	4.70	4.48	0.22
03020-262 03020-640	16.36 31.525	4.96 3.09	6.36 1.53	-1.40 1.57
03020-642	12.34	2.90	2.34	0.56
03020-660	32.305	2.59	2.31	0.29
03020-674	34.426	4.71	4.43	0.28
03020-676	34.76	4.74	4.76	-0.02
03020-678 03020-680	34.549 34.199	4.73 4.74	4.55 4.20	0.18
03020-682	33.662	4.74	3.66	1.08
03020-686	16.01	4.70	6.01	-1.31
03020-692	15.02	4.58	5.02	-0.44
03020-696	33.467	5.69	3.47	2.22
03020-712 03020-714	14.57	4.60 4.62	4.57 4.77	0.03 -0.15
03020-714	14.77	4.57	4.77	0.05
03020-720	15.14	4.56	5.14	-0.58
03020-746	13.84	8.66	3.84	4.82
03020-752	13.67	9.69	3.67	6.02
03020-754	33.194	10.05	3.19	6.86
03020-758 03020-760	13.74	9.48	3.74 3.59	6.30 5.89
03020-760	32.812	8.83	2.81	6.02
03020-768	33.133	7.51	3.13	4.38
03020-912	32.766	3.33	2.77	0.56
03020-930	33.48	3.28	3.48	-0.20
03020-934	33.422	3.60	3.42	0.18
03020-937 03020-946	14.61 13.79	4.54 2.82	4.61 3.79	-0.07 -0.97
03020-946	16.8	3.43	6.80	-3.37
03999-058	11.74	1.90	1.74	0.16
	STORAGE NODE TABLE	FOR 03999-902		
		l	l	-
				-
				-
		1	1	

	10)-Year Storm			
	Revise	d Existing Mode	el		
		Junctions			
Name	Rim Elev. (ft)	REAL HGL (ft)	Rim Elev. (ft) Actual	Height above/below Rim	Change from Existing Conditions
03000-046	13.47	2.5	3.47	-0.97	-12.81
03000-046	13.47	2.77	3.47	-0.97	0.79
ER TO STORAGE NODE TABLE	FOR 03000-050				
03000-054	14.64	4.72	4.64	0.08	1.92
03000-056	14	4.7	4.00	0.70	-1.73
03000-058	13.99 13.87	4.69 4.7	3.99 3.87	0.70 0.83	-2.59 -3.39
03000-064	13.4	4.71	3.40	1.31	-2.18
03000-068	15.8	2.36	5.80	-3.44	0.75
03000-070B	15.91	2.45	5.91	-3.46	0.74
03020-025	35.085	4.71	5.09	-0.38	0.01
03020-038 03020-044	16.06 12.38	2.52	6.06 2.38	-3.54 0.35	0.74
03020-044	32.77	2.73	2.77	0.33	0.74
03020-052	32.962	3.01	2.96	0.05	0.73
03020-054	13.14	3.04	3.14	-0.10	0.69
03020-055	12.93	3.08	2.93	0.15	0.69
03020-060 03020-064	31.921 32.283	3.09 3.26	1.92 2.28	1.17 0.98	0.23
03020-064	32.283	3.26	2.28	1.01	0.25
03020-000	33.003	3.6	3.00	0.60	0.28
03020-071	13.61	3.13	3.61	-0.48	0.66
03020-072	33.05	3.21	3.05	0.16	0.59
03020-074	13.38	3.46	3.38	0.08	0.39
03020-076	13.79	3.57 4.37	3.79	-0.22	0.32
03020-092 03020-092A	13.68	4.37	3.48	0.89	0.32
03020-092A	14.36	4.56	4.36	0.20	0.34
03020-168	34.482	4.7	4.48	0.22	0.00
03020-262	16.36	4.96	6.36	-1.40	0.00
03020-640	31.525	2.95	1.53	1.43	-0.14
03020-642	12.34	2.96	2.34	0.62	0.06
03020-660 03020-674	32.305 34.426	2.95 4.7	2.31 4.43	0.65	0.36 -0.01
03020-676	34.76	4.73	4.76	-0.03	-0.01
03020-678	34.549	4.73	4.55	0.18	0.00
03020-680	34.199	4.74	4.20	0.54	0.00
03020-682	33.662	4.74	3.66	1.08	0.00
03020-686	16.01	4.7	6.01	-1.31 -0.29	0.00
03020-692 03020-696	15.02 33.467	4.73 4.7	5.02 3.47	1.23	0.15
03020-030	14.57	4.67	4.57	0.10	0.07
03020-714	14.77	4.68	4.77	-0.09	0.06
03020-716	14.52	4.66	4.52	0.14	0.09
03020-720	15.14	4.67	5.14	-0.47	0.11
03020-746 03020-752	13.84	4.71	3.84 3.67	0.87 1.02	-3.95 -5.00
03020-752	33.194	4.69	3.19	1.02	-5.00
03020-758	13.74	4.69	3.74	0.95	-5.35
03020-760	13.59	4.69	3.59	1.10	-4.79
03020-762	32.812	4.67	2.81	1.86	-4.16
03020-768	33.133	4.67	3.13	1.54	-2.84
03020-912 03020-930	32.766 33.48	3.56 3.57	2.77 3.48	0.79	0.23
03020-930	33.422	3.57	3.48	0.09	0.29
03020-937	14.61	4.65	4.61	0.04	0.11
03020-946	13.79	3.31	3.79	-0.48	0.49
03020-982	16.94	3.27	6.94	-3.67	-0.16
03999-058	11.74	2.67	1.74	0.93	0.77
03999-902	14.59	2.21	4.59	-2.38	2.21
	1				

		10-	Year Storm			
		Post Dev	elopment Mode	1		
		Ju	ınctions			
	Name	Rim Elev. (ft)	REAL HGL (ft)	Rim Elev. (ft) Actual	Height above/below Rim	Change from Revised Existing Conditions
	03000-046	13.47	2.45	3.47	-1.02	-0.05
	03000-048	13.52	2.76	3.52	-0.76	-0.01
	03000-054	14.64	4.72	4.64	0.08	0.00
	03000-056	14	4.70	4.00	0.70	0.00
	03000-058 03000-060	13.99 13.87	4.70 4.71	3.99 3.87	0.71 0.84	0.01
	03000-064	13.4	4.70	3.40	1.30	-0.01
	03000-068	15.8	2.19	5.80	-3.61	-0.17
	03000-070B 03020-025	15.91 35.085	2.25 4.71	5.91 5.09	-3.66 -0.38	-0.20 0.00
	03020-023	16.06	2.34	6.06	-3.72	-0.18
	03020-044	12.38	2.58	2.38	0.20	-0.15
	03020-048	32.77	2.84	2.77	0.07	-0.11
	03020-052 03020-054	32.962 13.14	2.89 2.94	2.96 3.14	-0.07 -0.20	-0.12 -0.10
	03020-055	12.93	2.99	2.93	0.06	-0.10
	03020-060	31.921	3.0200	1.92	1.10	-0.070
	03020-064 03020-066	32.283 32.377	3.17 3.32	2.28	0.89 0.94	-0.09 -0.07
	03020-066	33.003	3.53	3.00	0.94	-0.07
	03020-071	13.61	3.04	3.61	-0.57	-0.09
	03020-072	33.05	3.14	3.05	0.09	-0.07
	03020-074	13.38	3.42 3.54	3.38	0.04	-0.04
	03020-076	13.79 33.483	4.36	3.79	-0.25 0.88	-0.03 -0.01
	03020-092A	13.68	4.43	3.68	0.75	-0.02
	03020-092B	14.36	4.55	4.36	0.19	-0.01
	03020-168	34.482	4.70 4.96	4.48	0.22	0.00
	03020-262 03020-640	16.36 31.525	4.96 2.86	6.36 1.53	-1.40 1.34	0.00
	03020-642	12.34	2.86	2.34	0.52	-0.10
	03020-660	32.305	2.86	2.31	0.56	-0.09
	03020-674 03020-676	34.426 34.76	4.70 4.74	4.43 4.76	-0.02	0.00
_	03020-678	34.549	4.74	4.76	0.18	0.00
	03020-680	34.199	4.74	4.20	0.54	0.00
	03020-682	33.662	4.74	3.66	1.08	0.00
	03020-686 03020-692	16.01 15.02	4.70 4.72	6.01 5.02	-1.31 -0.30	0.00 -0.01
	03020-692	33.467	4.72	3.47	1.23	0.00
	03020-712	14.57	4.68	4.57	0.11	0.01
	03020-714	14.77	4.68	4.77	-0.09	0.00
	03020-716 03020-720	14.52 15.14	4.65 4.65	4.52 5.14	-0.13	-0.01 -0.02
	03020-720	13.14	4.03	3.84	0.86	-0.02
	03020-752	13.67	4.69	3.67	1.02	0.00
	03020-754	33.194	4.69	3.19	1.50	0.01
	03020-758 03020-760	13.74 13.59	4.69 4.70	3.74 3.59	0.95 1.11	0.00
	03020-760	32.812	4.70	2.81	1.11	-0.01
	03020-768	33.133	4.66	3.13	1.53	-0.01
	03020-912	32.766	3.53	2.77	0.76	-0.03
_	03020-930 03020-934	33.48 33.422	3.55 3.91	3.48	0.07	-0.02 -0.02
	03020-934	14.61	4.65	4.61	0.49	0.00
	03020-946	13.79	3.25	3.79	-0.54	-0.06
	03020-982	16.94	2.30	6.94	-4.64	-0.97
	03999-058 03999-902	11.74 14.59	2.51 2.06	1.74 4.59	0.77 -2.53	-0.16 -0.15
	B2.0	14.27	2.61	4.39	-2.53	-0.13
	B3.0	15.32	2.63	5.32	-2.69	
	B4.0	17.36	2.71	7.36	-4.65	
	B5.0 B6.0	17.61	2.78	7.61 7.40	-4.83 -4.55	
_	B6.0 B7.0	17.4	2.85	7.40	-4.55 -4.72	
_	B8.0	17.37	2.89	7.37	-4.48	

Project Name: Ocean Park Timmons Group Project No. 50568 Date: 04/07/2025 Calculated By: KB

Design Storm Analysis - 10 YR

	10-Year Storm			
	Original Existing Mo	del		
	Storage Node	s		
Name	Rim Elev. (ft)	REAL HGL (ft)	Rim Elev (ft) Actual	Height above/below Rim
03020-002B	30.32	4.74	0.32	4.42
03020-022	16.39	4.74	6.39	-1.65
03020-027	33.262	4.70	3.26	1.44
03020-046	32.05	2.15	2.05	0.10
03020-057	33.181	4.46	3.18	1.28
03020-086	38.264	5.35	8.26	-2.91
03020-094	33.266	5.15	3.27	1.88
03020-264	15.84	5.62	5.84	-0.22
03020-306	32.172	4.74	2.17	2.57
03020-310	32.354	4.74	2.35	2.39
03020-598	35.385	5.44	5.39	0.06
	•			•
03020-638	32.617	3.93	2.62	1.31
03020-644	31.551	3.69	1.55	2.14
03020-694	33.882	4.57	3.88	0.69
03020-706	15.08	4.68	5.08	-0.40
03020-764	32.242	4.61	2.24	2.37
03020-774	32.248	4.55	2.25	2.30
03020-914	33.446	3.29	3.45	-0.16
03020-916	34.347	3.51	4.35	-0.84
03020-938	32.991	4.53	2.99	1.54
03020-942	35.248	4.80	5.25	-0.45
03040-070	32.62	3.52	2.62	0.90
03040-108	33.119	4.06	3.12	0.94
03999-902	13.6	1.48	3.60	-2.12
114620	3E	4.70	5.00	0.20

	10)-Year Storm			
	Revise	d Existing Mode	el		
	Sto	rage Nodes			
Name	Rim Elev. (ft)	REAL HGL (ft)	Rim Elev. (ft) Actual	Height above/below Rim	Change from Existing Conditions
03000-043	13.8	6.60	3.80	2.80	6.60
03000-043	15.1	4.73	5.10	-0.37	4.73
03020-030	30.32	4.73	0.32	4.41	-0.01
03020-0028	16.59	4.09	6.59	-2.50	-0.65
03020-022A	19	4.73	9.00	-4.27	4.73
03020-027	33.262	4.72	3.26	1.46	0.02
03020-046	32.05	2 92	2.05	0.87	0.77
03020-057	33.181	4.62	3.18	1.44	0.16
03020-086	38.264	5.35	8.26	-2.91	0.00
03020-094	33.266	5.20	3.27	1.93	0.05
03020-264	15.84	5.62	5.84	-0.22	0.00
03020-306	32.172	4.74	2.17	2.57	0.00
03020-310	32.354	4.74	2.35	2.39	0.00
03020-598	35.385	5.44	5.39	0.06	0.00
03020-624	15.66	4.74	5.66	-0.92	4.74
03020-626	15.55	4.75	5.55	-0.80	4.75
03020-638	32.617	2.94	2.62	0.32	-0.99
03020-644	31.551	2.94	1.55	1.39	-0.75
03020-694	33.882	4.71	3.88	0.83	0.14
03020-706	15.08	4.7	5.08	-0.38	0.02
03020-764	32.242	4.62	2.24	2.38	0.01
03020-774	32,248	4.62	2.25	2.37	0.07
03020-914	33.446	3.56	3.45	0.11	0.27
03020-916	34.347	3.55	4.35	-0.80	0.04
03020-938	32.991	4.62	2.99	1.63	0.09
03020-942	35.248	5.16	5.25	-0.09	0.36
03040-070	32.62	3.55	2.62	0.93	0.03
03040-108	33.119	4.06	3.12	0.94	0.00
J14630	35	4.7	5.00	-0.30	0.00

4								
	Stor	age Nodes						
Name	Rim Elev. (ft)	REAL HGL (ft)	Rim Elev. (ft) Actual	Height above/below Rim	Change i Revise Existin Conditi			
03000-043	13.8	6.6	3.80	2.80	0.00			
03000-043	13.8	4.74	5.10	-0.36	0.00			
03020-030	30.32	4.74	0.32	4.42	0.01			
03020-0028	16.59	2.32	6.59	-4.27	-1.77			
03020-027	33.262	4.72	3.26	1.46	0.00			
03020-046	32.05	2.81	2.05	0.76	-0.11			
03020-057	33.181	4.61	3.18	1.43	-0.01			
03020-086	38.264	5.35	8.26	-2.91	0.00			
03020-094	33.266	5.19	3.27	1.92	-0.01			
03020-264	15.84	5.62	5.84	-0.22	0.00			
03020-306	32.172	4.74	2.17	2.57	0.00			
03020-310	32.354	4.74	2.35	2.39	0.00			
03020-598	35.385	5.44	5.39	0.06	0.00			
03020-624	15.66	4.75	5.66	-0.91	0.01			
03020-626	15.55	4.76	5.55	-0.79	0.01			
03020-638	32.617	2.84	2.62	0.22	-0.10			
03020-644	31.551	2.85	1.55	1.30	-0.09			
03020-694	33.882	4.71	3.88	0.83	0.00			
03020-706 03020-764	15.08 32.242	4.7 4.61	5.08 2.24	-0.38 2.37	-0.00			
03020-764	32.242	4.61	2.24	2.37	-0.01			
03020-774	32.248	3.53	3.45	0.08	-0.03			
03020-914	34.347	3.53	4.35	-0.81	-0.03			
03020-916	34.347	3.54 4.61	2 99	1.62	-0.01			
03020-938	35.248	5.15	5.25	-0.10	-0.01			
03040-070	32.62	3.54	2.62	0.92	-0.01			
03040-108	33.119	4.06	3.12	0.94	0.00			
***************************************					2.00			
J14630	35	4.7	5.00	-0.30	0.00			
Pump_Station	13.8	1.9	3.80	-1.90	-0.15			
A1.0	17.17	5.02	7.17	-2.15				
A1.1	17.17	5.07	7.17	-2.10				
A2.0	17.19	5.05	7.19	-2.14				
A2.1	17.19	5.06	7.19	-2.13				
A2.2	16	5.06	6.00	-0.94				
A3.0	17.18	4.88	7.18	-2.30				
A3.1	17.18	4.88	7.18	-2.30				
A3.2	15.1	4.74	5.10	-0.36				
B1.0	13.46	2.52	3.46	-0.94				
B4.1 B5.1	12.4	2.77	2.40 7.27	0.37 -4.48				
B5.2	13.3	2.8	3.30	-0.50				
B6.1 B6.2	17.08 13.95	2.85	7.08 3.95	-4.23 -1.08				
B5.2 B7.1	17.25	2.87	7.25	-1.08				
B7.1 B7.2	17.25	2.88	4.01	-4.37				
B8.1	17.31	2.9	7.31	-4.41				
B8.2	15.36	3.04	4.01	-0.97				

10-Year Storm

Project Name: Ocean Park Timmons Group Project No. 50568 Date: 04/07/2025 Calculated By: KB

Check Storm Analysis - 100 YR

1	00-Year Storm			
Origin	nal Existing Mod	lel		
	Junctions			
Name	Rim Elev. (ft)	REAL HGL (ft)	Rim Elev. (ft) Actual	Height above/below Rim
03000-046	13.76	13.29	3.76	9.53
03000-048	13.11	2.45	3.11	-0.66
03000-050	15.1	3.25	5.10	-1.85
03000-054	14.64	4.04	4.64	-0.60
03000-056 03000-058	14	4.41 4.49	4.00 3.99	0.41
03000-060	13.87	4.49	3.87	0.62
03000-064	13.4	4.52	3.40	1.12
03000-068	34.224	2.13	4.22	-2.09
03000-070B	15.37	2.24	5.37	-3.13
03020-025 03020-038	35.085 16.06	4.43 2.31	5.09 6.06	-0.66 -3.75
03020-038	12.38	2.53	2.38	0.15
03020-044	32.77	2.78	2.77	0.13
03020-052	32.962	2.84	2.96	-0.12
03020-054	13.14	2.90	3.14	-0.24
03020-055	12.93	2.94	2.93	0.01
03020-060 03020-064	31.921 32.283	3.34 3.45	1.92 2.28	1.42
03020-064	32.283	3.45	2.28	1.17
03020-070	33.003	3.74	3.00	0.74
03020-071	13.61	3.05	3.61	-0.56
03020-072	33.05	3.19	3.05	0.14
03020-074	13.38	3.63	3.38	0.25
03020-076	13.79	3.83	3.79	0.04
03020-092	33.483	4.42 4.45	3.48	0.94
03020-092A 03020-092B	13.68 14.36	4.45	3.68 4.36	0.77
03020-0525	34.482	4.30	4.48	-0.13
03020-262	16.36	4.72	6.36	-1.64
03020-640	31.525	3.84	1.53	2.32
03020-642	12.34	3.69	2.34	1.35
03020-660 03020-674	32.305 34.426	3.37 4.31	2.31	1.07 -0.12
03020-674	34.426	4.34	4.43	-0.12
03020-678	34.70	4.33	4.55	-0.42
03020-680	34.199	4.35	4.20	0.15
03020-682	33.662	4.35	3.66	0.69
03020-686	16.01	4.30	6.01	-1.71
03020-692	15.02	4.65	5.02	-0.37
03020-696 03020-712	33.467 14.57	4.56 4.83	3.47 4.57	1.09 0.26
03020-712	14.77	4.82	4.77	0.26
03020-714	14.52	4.90	4.52	0.38
03020-720	15.14	4.95	5.14	-0.19
03020-746	13.84	4.50	3.84	0.66
03020-752	13.67	4.51	3.67	0.84
03020-754	33.194	4.50	3.19	1.31
03020-758	13.74 13.59	4.49 4.50	3.74 3.59	0.75 0.91
03020-760 03020-762	32.812	4.50	2.81	1.69
03020-762	33.133	4.53	3.13	1.40
03020-912	32.766	3.99	2.77	1.22
03020-930	33.48	3.92	3.48	0.44
03020-934	33.422	4.09	3.42	0.67
03020-937	14.61	5.00	4.61	0.39
	13.79 16.8	3.38 3.57	3.79 6.80	-0.41 -3.23
03020-946			1.74	0.72
03020-982		2 46		
	11.74	2.46 OR 03999-902	1.74	0.72
03020-982 03999-058	11.74		1.74	0.72
03020-982 03999-058	11.74		1.74	0.72
03020-982 03999-058	11.74		1.74	0.72

Name Rim Elev. (ft) REAL HGL (ft) Actual above/below Existing		10	0-Year Storm								
Name	Revised Existing Model										
Name	Junctions										
03000-048	Name	Rim Elev. (ft)	REAL HGL (ft)		above/below	Change from Existing Conditions					
TOSTORAGE NODE TABLE FOR 13000-050 30000-054 1464 4.67 4.69 4.00 0.000-058 13.99 4.71 3.99 0.72 0.22 0.3000-058 13.99 4.71 3.87 0.83 0.21 0.3000-058 13.89 4.71 3.87 0.83 0.22 0.3000-060 13.87 4.7 3.87 0.83 0.21 0.3000-068 15.8 3.06 5.80 5.80 2.74 0.92 0.9200-068 15.91 3.16 5.91 2.75 0.92 0.9200-078 15.91 3.16 5.91 2.75 0.92 0.9200-038 1.606 3.26 3.606 3.27 0.92 0.9200-038 1.606 3.26 3.37 3.32 2.38 1.15 1.00 0.920-048 3.27,7 3.32 2.77 1.05 1.04 0.920-054 0.920-054 3.27,7 3.22 2.77 1.05 1.04 0.920-054 0.920-054 3.27,7 3.22 2.77 1.05 1.04 0.920-054 0.920-054 3.27,7 3.22 2.77 1.05 1.04 0.920-054 0.920-054 3.27,7 3.22 2.77 1.05 1.04 0.920-054 0.920-054 0.920-054 0.920-054 0.920-054 0.920-054 0.920-054 0.920-054 0.920-054 0.920-054 0.920-056 0.920-056 0.920-056 0.920-056 0.920-057 0.920-058 0.920-058 0.920-058 0.920-058 0.92	03000-046	13.47	3.06	3.47	-0.41	-10.23					
03000-054	03000-048	13.52	3.27	3.52							
03000-056											
03000-058 13-99 471 3-99 0.72 0.22 0.3000-050 03187 47 3-87 0.83 0.21 03000-056 13-8 3.65 5.80 2.74 0.93 03000-056 13-8 3.65 5.80 2.75 0.92 03000-058 15-81 3.16 5-91 2.75 0.92 03000-058 15-91 3.16 5-91 2.75 0.92 03000-058 15-91 3.16 5-91 2.75 0.92 03000-058 15-91 3.16 5-91 2.75 0.92 03000-058 15-91 3.16 5-91 2.75 0.92 03000-058 15-91 3.26 6.06 2.80 0.95 03000-058 15-91 3.26 6.06 2.80 0.95 03000-058 13-91 3.28 2.77 1.05 1.04 03000-052 22-962 3.84 2.96 0.88 1.00 03000-052 22-962 3.84 2.96 0.88 1.00 03000-055 12-93 3.88 2.93 0.95 0.94 03000-055 12-93 3.88 1-92 1.96 0.54 0.9000-055 12-93 3.88 1-92 1.96 0.54 0.9000-060 32-283 3.97 2.28 1.69 0.52 0.9000-060 32-283 3.97 2.28 1.69 0.52 0.9000-060 32-377 4.03 2.38 1.65 0.45 0.9000-077 33.03 4.14 3.00 1.14 0.40 0.9000-077 33.03 3.35 3.65 3.36 3.65 0.85 0.71 0.9000-077 3.36 3.30 3.											
03000-060											
03000-058	03000-060	13.87									
0300-0708 15-91 3-16 5-91 -2.75 0.92											
03020-055 35.085 4.46 5.09 -0.63 0.095 03020-038 16.06 3.26 6.06 -2.80 0.95 03020-044 12.38 3.53 2.38 11.5 1.00 03020-048 32.77 3.82 2.77 1.05 1.04 03020-052 32.962 3.84 2.96 0.88 1.00 03020-054 13.14 3.85 3.14 0.71 0.95 03020-054 13.14 3.85 3.14 0.71 0.95 03020-054 13.14 3.85 3.14 0.71 0.95 03020-054 13.14 3.85 3.14 0.71 0.95 03020-056 12.93 3.88 2.93 0.95 0.94 03020-060 31.921 3.88 1.92 1.96 0.54 03020-060 32.277 4.03 2.38 1.69 0.52 03020-066 32.377 4.03 2.38 1.69 0.52 03020-066 32.377 4.03 2.38 3.61 0.27 0.80 03020-070 33.003 4.14 3.00 1.14 0.40 03020-071 13.61 3.88 3.61 0.27 0.83 03020-072 33.95 3.9 3.05 0.85 0.71 03020-073 33.95 3.9 3.05 0.85 0.71 03020-074 13.38 3.97 3.38 0.59 0.34 03020-075 33.483 4.56 3.68 0.94 0.17 03020-0920 33.483 4.55 3.48 1.08 0.14 03020-0921 13.68 4.62 3.68 0.94 0.17 03020-0928 14.36 4.66 4.56 0.30 0.15 03020-162 15.36 4.72 6.36 -1.64 0.00 03020-660 32.305 3.82 2.31 1.53 0.65 03020-674 34.426 4.3 4.48 -1.8 0.03 03020-678 34.59 4.33 4.55 -0.22 0.00 03020-660 33.465 4.35 4.37 0.05 -0.21 03020-660 33.465 4.35 4.47 -0.42 0.00 03020-660 33.465 4.35 4.37 0.05 -0.21 03020-76 34.426 4.3 4.43 4.43 0.14 0.01 03020-678 34.59 4.33 4.55 -0.22 0.00 03020-660 33.467 4.74 3.47 0.14 -0.10 03020-76 34.426 4.3 4.47 0.47 0.05 0.20 03020-76 34.426 4.3 4.47 0.47 0.00 03020-76 34.436 4.37 4.47 3.47 0.14 0.19 03020-76 33.48 4.77 4.65 4.77 0.14 0.19 03020-76 33.48 4.77 4.65 4.77 0.14 0.10 03020-76 33.48 4.77 4.65 4.77 0.14 0.10 03020-76 33.48 33.33											
03020-038 16.06 3.26 6.06 -2.80 0.95											
03020-044 12.38 3.53 2.38 1.15 1.00 03020-048 32.77 3.82 2.77 1.05 1.04 03020-052 32.962 3.84 2.96 0.88 1.00 03020-054 13.14 3.85 3.14 0.71 0.95 03020-055 12.93 3.88 2.93 0.95 0.94 03020-056 12.93 3.88 2.93 0.95 0.94 03020-060 31.921 3.88 1.92 1.96 0.54 03020-060 31.921 3.88 1.92 1.96 0.54 03020-066 32.377 4.03 2.38 1.69 0.52 03020-066 32.377 4.03 2.38 1.69 0.52 03020-070 33.03 4.14 3.00 1.14 0.40 03020-071 13.61 3.88 3.61 0.27 0.83 03020-072 33.95 3.9 3.05 0.85 0.71 03020-073 33.93 3.05 0.85 0.71 03020-074 13.38 3.97 3.38 0.59 0.34 03020-072 33.483 4.55 3.48 1.08 0.14 03020-073 33.483 4.55 3.48 1.08 0.14 03020-092A 13.68 4.62 3.68 0.94 0.17 03020-092B 14.36 4.66 4.36 0.30 0.15 03020-168 34.482 4.3 4.48 0.18 0.00 03020-169 34.482 4.3 4.48 0.18 0.00 03020-169 34.484 4.3 4.48 0.18 0.00 03020-169 3.45 3.87 1.53 2.28 0.004 03020-0640 31.525 3.8 1.53 2.28 0.004 03020-169 34.484 4.3 4.47 0.40 0.00 03020-169 34.484 4.3 4.47 0.44 0.00 03020-169 34.484 4.3 4.47 0.40 0.00 03020-169 34.494 4.3 4.47 0.40 0.00 03020-169 34.494 4.3 4.47 0.40 0.00 03020-169 34.494 4.3 4.47 0.40 0.00 03020-169 34.194 4.37 4.47 0.44 0.00 03020-169 34.194 4.37 4.47 0.44 0.00 03020-169 34.194 4.37 4.47 0.44 0.00 03020-169 34.194 4.37 4.47 0.44 0.00 03020-169 34.194 4.37 4.47 0.44 0.00 03020-169 34.194 4.37 3.47 0.14 0.00 03020-169 34.194 4.37 3.47 0.14 0.00 03020-169 34.194 4.37 3.47 0.14 0.00 03020-169 34.194 4.77 3.47 0.14 0.00 03020-169 34.194 4.77 3.47 0.14 0.00 03020-169 34.194 4.77 3.4											
03020-052 23-962 3.84 2.97 1.05 1.04 03020-052 23-962 3.84 2.96 0.88 1.00 03020-054 13.14 3.85 3.14 0.71 0.95 03020-055 12.93 3.88 2.93 0.95 0.94 03020-050 12.93 3.88 1.92 1.96 0.54 03020-060 31.921 3.88 1.92 1.96 0.54 03020-064 32.283 3.97 2.28 1.96 0.54 03020-066 32.283 3.97 2.28 1.69 0.52 03020-070 33.003 4.14 3.00 1.14 0.40 03020-070 33.003 4.14 3.00 1.14 0.40 03020-071 3.51 3.88 3.61 0.27 0.83 03020-072 33.05 3.9 3.05 0.85 0.71 03020-073 3.17 4.01 3.79 0.22 0.18 03020-076 13.79 4.01 3.79 0.22 0.18 03020-078 13.79 4.01 3.79 0.22 0.18 03020-078 3.463 4.56 3.48 0.08 0.17 03020-093 3.463 4.56 3.48 0.08 0.17 03020-093 3.463 4.56 3.48 0.08 0.17 03020-093 3.463 4.56 3.48 0.08 0.17 03020-093 3.463 4.56 3.48 0.08 0.17 03020-094 3.483 4.56 3.48 0.08 0.17 03020-094 3.483 4.56 3.48 0.08 0.17 03020-095 3.483 4.56 3.48 0.08 0.17 03020-096 3.483 4.56 3.48 0.08 0.17 03020-097 3.483 4.56 3.48 0.18 0.01 03020-697 3.483 4.56 3.48 0.18 0.00 03020-697 3.483 4.42 4.3 4.68 0.18 0.00 03020-697 3.483 4.43 4.68 0.18 0.00 03020-697 3.484 4.34 4.76 0.02 0.00 03020-698 3.456 4.34 4.76 0.42 0.00 03020-698 3.459 4.34 4.20 0.14 0.01 03020-698 3.469 4.33 4.57 0.42 0.00 03020-698 3.469 4.33 4.57 0.42 0.00 03020-698 3.469 4.34 4.76 0.42 0.00 03020-698 3.467 4.57 6.56 6.77 0.80 03020-698 3.467 4.47 3.47 1.77 0.18 03020-794 1.47 4.63 4.77 0.14 0.19 03020-795 1.54 4.65 5.14 0.49 0.30 03020-796 1.59 4.77 3.47 1.77 0.18 03020-796 1.59 4.77 3.47 1.77 0.18 03020-796 1.54 4.77 4.65 4.77											
03020-052 32.962 3.84 2.96 0.88 1.00											
03020-055 12-93 3.88 2-93 0.95 0.94 03020-060 31-921 3.88 1-92 1.96 0.54 03020-064 32-283 3-97 2.28 1.69 0.52 03020-066 32-377 4.03 2.38 1.69 0.52 03020-070 33.003 4.14 3.00 1.14 0.40 03020-071 13.61 3.88 3.61 0.27 0.85 03020-072 33.05 3.9 3.05 0.85 0.71 03020-074 13.38 3.97 3.38 0.59 0.34 03020-076 13.79 4.01 3.79 0.22 0.18 03020-076 13.79 4.01 3.79 0.22 0.18 03020-072 33.483 4.55 3.48 1.08 0.14 03020-0928 14.36 4.62 3.68 0.94 0.17 03020-0928 14.36 4.66 4.36 0.30 0.15 03020-168 34.482 4.3 4.48 0.18 0.00 03020-640 31.525 3.8 1.53 2.28 -0.04 03020-0642 13.34 3.82 2.34 1.48 0.13 03020-642 13.34 3.82 2.34 1.48 0.13 03020-642 13.34 3.82 2.34 4.47 0.00 03020-642 13.34 3.82 2.34 4.40 0.14 03020-642 13.34 3.82 2.34 4.40 0.14 0.00 03020-642 13.34 3.82 2.34 4.40 0.14 0.00 03020-643 34.496 4.3 4.43 4.45 0.18 0.19 03020-649 33.65 3.87 3.38 1.53 0.04 0.00 03020-640 33.65 3.87 3.38 1.53 0.04 0.00 03020-640 33.65 3.87 3.38 1.53 0.05 0.00 03020-640 33.65 3.87 3.38 3.5 3.60 0.00 03020-640 33.65 3.65 4.75 0.00 0.00 03020-640 33.65 3.65 4.75 0.00 0.00 03020-640 33.45 4.35 4.43 4.75 0.42 0.00 03020-640 33.45 4.35 4.43 4.75 0.42 0.00 03020-640 33.45 4.35 4.35 0.20 0.00 03020-640 33.46 4.35 4.37 0.25 0.00 03020-640 33.46 4.35 4.37 0.05 0.00 03020-640 33.46 4.37 4.75 0.40 0.00 03020-640 33.46 4.35 4.37 0.00 0.00 03020-640 33.46 4.35 4.37 0.00 0.00 03020-640 33.46 4.35 4.37 0.00 0.00 03020-640 33.46 4.35 4.37 0.00 0.00 03020-640 33.46 4.37 3.44 4.75 0.00 0.00 03020-640 33.46				2.96	0.88						
03020-060 31-921 3.88 1-92 1-96 0.52											
03020-064 32.283 3.97 2.28 1.69 0.52											
03020-066 32.377 4.03 2.38 1.65 0.45											
03020-070 33.003 4.14 3.00 1.14 0.40											
03020-071 13.61 3.88 3.61 0.27 0.83 0.71 03020-072 33.05 3.9 3.05 0.85 0.71 03020-076 13.79 4.01 3.79 0.22 0.18 03020-076 13.79 4.01 3.79 0.22 0.18 03020-076 13.79 4.01 3.79 0.22 0.18 03020-076 13.79 4.01 3.79 0.22 0.18 03020-092 33.483 4.56 3.48 1.08 0.14 0.10											
03020-072 33.05 3.9 3.05 0.85 0.71				3.61		0.83					
03020-076 13.79 4.01 3.79 0.22 0.18					0.85						
03020-092 33.483 4.56 3.48 1.08 0.14 03020-092A 13.68 4.62 3.68 0.94 0.17 03020-092B 14.36 4.66 4.36 0.30 0.15 03020-168 34.482 4.3 4.48 0.18 0.00 03020-262 16.36 4.72 6.36 -1.64 0.00 03020-640 315.75 3.8 1.53 2.28 -0.04 03020-640 315.75 3.8 1.53 1.52 0.04 03020-650 32.305 3.82 2.34 1.48 0.13 03020-674 34.426 4.3 4.43 -0.13 -0.01 03020-678 34.549 4.33 4.55 -0.22 0.00 03020-680 34.199 4.34 4.20 0.14 -0.01 03020-681 16.01 4.3 5.02 -0.6 0.11 03020-686 16.01 4.3 6.0 6.9 0.00 <											
03020-092A 13.68 4.62 3.68 0.94 0.17 03020-092B 14.86 4.66 4.36 0.30 0.15 03020-186 34.482 4.3 4.48 -0.18 0.00 03020-182 16.36 4.72 5.36 -1.64 0.00 03020-262 16.36 4.72 5.36 -1.64 0.00 03020-460 31.525 3.8 15.3 2.28 -0.04 03020-660 32.305 3.82 2.34 1.48 1.15 03020-660 32.305 3.82 2.31 1.52 0.45 03020-674 34.426 4.3 4.43 -0.13 -0.01 03020-675 34.76 4.34 4.76 -0.42 0.00 03020-676 34.76 4.34 4.76 -0.42 0.00 03020-678 34.549 4.33 4.55 -0.22 0.00 03020-680 34.199 4.34 4.20 0.14 -0.01 03020-680 33.662 4.35 3.66 0.69 0.00 03020-680 33.469 4.34 4.20 0.14 -0.01 03020-680 33.469 4.34 4.20 0.14 -0.01 03020-681 1.61 4.3 6.01 -1.71 0.00 03020-695 33.662 4.35 3.66 0.69 0.00 03020-696 33.467 4.74 3.47 1.27 0.18 03020-121 14.57 4.52 4.57 0.05 0.21 03020-121 14.57 4.52 4.57 0.05 0.21 03020-120 15.14 4.85 5.14 0.49 0.30 03020-120 15.14 4.85 5.14 0.49 0.30 03020-120 15.14 4.77 3.74 0.44 0.39 03020-120 13.59 4.7 3.59 1.11 0.20 03020-120 13.59 4.7 3.59 1.11 0.20 03020-120 33.184 4.72 3.79 1.55 0.22 03020-120 33.184 4.72 3.79 1.55 0.22 03020-120 33.183 4.7 3.19 1.5 0.20 03020-120 33.184 4.7 3.79 1.18 0.20 03020-120 33.183 4.7 3.13 1.57 0.17 03020-120 33.184 4.7 3.74 0.98 0.23 03020-120 33.183 4.7 3.13 1.57 0.17 03020-120 33.184 4.7 3.19 1.5 0.20 03020-20 33.48 3.99 3.48 0.51 0.07 03020-20 33.48 3.99 3.48 0.51 0.07 03020-20 33.48 3.99 3.48 0.51 0.07 03020-20 34.61 3.66 6.61 0.05 0.34 03020-20 34.61 3.66 6.64 0.05 0.34 03020-20 34.61 3.66 6.64 0.05 0.34 03020-20 34.45 3.66 6.64											
03020-168 34.482 4.3											
03020-662 16.36 4.72 6.36 -1.64 0.00											
03020-640 315.25 3.8 15.3 2.28 -0.04											
03020-660 32-305 3.82 2.31 1.52 0.45 03020-674 34.456 4.3 4.43 4.76 0.13 0.01 03020-675 34.549 4.33 4.43 4.76 0.42 0.00 03020-676 34.549 4.33 4.55 0.22 0.00 03020-680 34.199 4.34 4.20 0.14 0.01 03020-680 34.199 4.34 4.20 0.14 0.01 03020-680 1.50 4.76 0.50 0.60 0.00 03020-680 1.50 4.76 5.02 0.26 0.11 03020-680 1.50 4.76 5.02 0.26 0.11 03020-690 33.467 4.74 3.47 1.27 0.18 03020-991 1.457 4.62 4.57 0.05 0.21 03020-11 1.457 4.63 4.77 0.14 0.19 03020-11 1.457 4.63 4.77 0.14 0.19 03020-11 1.452 4.63 4.77 0.14 0.19 03020-12 1.514 4.65 5.14 0.49 0.30 03020-146 1.184 4.7 3.67 1.03 0.19 03020-152 1.167 4.77 4.73 3.67 1.03 0.19 03020-154 3.19 4.77 3.17 1.08 0.22 03020-155 3.19 4.77 3.17 1.08 0.22 03020-160 3.183 4.77 3.17 1.88 0.29 03020-160 3.183 4.77 3.17 1.89 0.20 03020-160 3.183 4.7 3.13 1.57 0.17 03020-160 3.183 4.7 3.13 1.57 0.17 03020-292 3.148 3.99 3.48 0.51 0.07 03020-397 3.146 4.66 4.61 0.05 0.34 03020-292 3.348 3.99 3.48 0.51 0.07 03020-292 3.148 4.66 4.61 0.05 0.34 03020-292 1.61 4.66 4.61 0.05 0.34 03020-292 1.61 4.66 4.61 0.05 0.34 03020-292 1.61 4.66 4.61 0.05 0.34 03020-292 1.61 4.66 4.61 0.05 0.34 03020-292 1.61 4.66 4.61 0.05 0.34 03020-292 1.61 4.66 4.61 0.05 0.34 03020-292 1.46 0.65 0.64 1.71 0.99											
93020-674 34.426 4.3 4.43 4.43 -0.13 -0.01 93020-678 34.59 34.59 4.33 4.55 -0.22 0.00 93020-680 34.599 4.33 4.55 -0.22 0.00 93020-680 34.699 4.35 3.66 0.69 0.00 93020-680 16.10 1.71 0.00 93020-680 16.10 1.71 0.00 93020-680 16.10 1.71 0.00 93020-692 15.02 1.76 1.70											
03020-676 34.76 4.34 4.76 0.42 0.00											
03020-678 34.549 4.33 4.55 -0.22 0.00											
03020-680 34.199 4.34 4.20 0.14 -0.01											
03020-682 33.662 4.35 3.66 0.69 0.00											
03020-686 16.01 4.3 6.01 -1.71 0.00					0.69						
03020-056 33.467 4.74 34.7 0.18			4.3			0.00					
03020-712											
0300-0744 14.77 4.63 4.77 0.14 0.19											
03020-716 14.52 4.63 4.52 0.11 0.27											
03020-726 15.14 4.65 5.14 0.49 0.30 03020-746 13.84 4.7 3.84 0.86 0.20 03020-752 13.67 4.7 3.87 1.03 0.19 03020-754 33.194 4.77 3.19 1.53 0.19 03020-758 13.74 4.72 3.74 0.98 0.23 03020-760 13.59 4.7 3.59 1.11 0.20 03020-762 32.812 4.7 2.81 1.89 0.20 03020-763 3.133 4.7 3.13 1.57 0.17 03020-912 32.766 3.97 2.77 1.20 0.02 03020-930 33.48 3.99 3.48 0.51 0.07 03020-937 14.61 4.66 4.61 0.05 0.34 03020-937 14.61 4.66 4.61 0.05 0.34 03020-982 11.74 3.45 0.94 3.28 0.09 03099-952 11.74 3.66 6.94 3.28 0.09 03099-952 11.74 3.45 1.74 1.71 0.99											
03020-746 13.84 4.7 3.84 0.86 0.20											
03020/52											
03020/58 13.74 4.72 3.74 0.98 0.23											
03020-760 13.59 4.7 3.59 1.11 0.20 03020-762 32.812 4.7 2.81 1.89 0.20 03020-768 33.133 4.7 33.13 1.57 0.17 03020-912 32.766 3.97 2.77 1.20 0.02 03020-930 33.48 3.99 3.48 0.51 0.07 03020-934 33.422 4.26 3.42 0.84 0.17 03020-937 14.61 4.66 4.61 0.05 0.34 03020-946 13.79 3.33 3.79 0.14 0.55 03020-982 15.94 3.66 5.94 -3.28 0.09 03999-958 11.74 3.45 1.74 1.71 0.99											
09020-762 32.812 4.7 2.81 1.89 0.20 09020-768 33.133 4.7 3.13 1.57 0.17 09020-912 32.766 3.37 2.77 1.20 -0.02 09020-930 33.48 3.99 3.48 0.51 0.07 09020-934 33.422 4.26 3.42 0.84 0.17 09020-937 14.61 4.66 4.61 0.05 -0.34 09020-946 13.79 3.93 3.79 0.14 0.55 09020-982 11.74 3.65 6.94 -3.28 0.09 09399-958 11.74 3.45 1.74 1.71 0.99											
09020-768 33.133 4.7 31.13 1.57 0.17 09020-769 03020-912 32.766 3.97 2.77 1.20 0.02 03020-930 33.48 3.99 3.48 0.51 0.07 03020-934 33.422 4.26 3.42 0.84 0.17 03020-937 14.61 4.66 4.61 0.05 0.34 0.34 0.34 0.35 0.34 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35											
03020-912 32.766 3.97 2.77 1.20 -0.02 03020-930 33.48 3.99 3.48 0.51 0.07 03020-934 33.422 4.26 3.42 0.84 0.17 03020-937 14.61 4.66 4.61 0.05 -0.34 03020-946 11.79 3.39 3.79 0.14 0.55 03020-946 13.79 3.66 6.94 3.28 0.09 03020-945 11.74 3.45 1.74 1.71 0.99											
03020-930 33.48 3.99 3.48 0.51 0.07 03020-934 33.422 4.26 3.42 0.84 0.17 03020-937 14.61 4.66 4.61 0.05 0.34 03020-946 13.79 3.33 3.79 0.14 0.55 03020-942 15.94 3.66 6.94 3.28 0.09 03999-958 11.74 3.45 1.74 1.71 0.99											
03020-934 33.422 4.26 3.42 0.84 0.17 03020-937 1461 4.66 4.61 0.05 0.34 03020-946 11.79 3.37 3.79 0.14 0.55 03020-946 13.79 3.66 6.94 -3.28 0.09 03020-958 11.74 3.65 1.74 1.71 0.99											
03020-937 14.61 4.66 4.61 0.05 -0.34 03020-946 13.79 3.93 3.79 0.14 0.55 03020-982 16.94 3.65 6.94 -3.28 0.09 03999-058 11.74 3.45 1.74 1.71 0.99											
03020-982 16.94 3.66 6.94 -3.28 0.09 03999-058 11.74 3.45 1.74 1.71 0.99				4.61							
03999-058 11.74 3.45 1.74 1.71 0.99											
<u>14.59</u> <u>2.89</u> <u>4.59</u> <u>-1.70</u> <u>2.89</u>											
	03999-902	14.59	2.89	4.59	-1.70	2.89					
		_									
						l					

100-Year Storm									
	Post Devi	elopment Mode	ı						
	Ju	ınctions							
Name	Rim Elev. (ft)	REAL HGL (ft)	Rim Elev. (ft) Actual	Height above/below Rim	Change from Revised Existing Conditions				
03000-046	13.47	3.27	3.47	-0.20	0.21				
03000-048	13.52	3.44	3.52	-0.08	0.17				
03000-054	14.64	4.68	4.64	0.04	0.01				
03000-054	14.64	4.68	4.64	0.69	0.00				
03000-058	13.99	4.70	3.99	0.71	-0.01				
03000-060	13.87	4.71	3.87	0.84	0.01				
03000-064	13.4 15.8	4.72 3.10	3.40 5.80	1.32 -2.70	-0.01				
03000-088 03000-070B	15.91	3.18	5.91	-2.73	0.04				
03020-025	35.085	4.46	5.09	-0.63	0.00				
03020-038	16.06	3.28	6.06	-2.78	0.02				
03020-044 03020-048	12.38 32.77	3.55 3.85	2.38 2.77	1.17	0.02				
03020-048	32.77	3.85	2.77	0.90	0.03				
03020-054	13.14	3.88	3.14	0.74	0.03				
03020-055	12.93	3.90	2.93	0.97	0.02				
03020-060	31.921	3.9100	1.92	1.99	0.030				
03020-064 03020-066	32.283 32.377	3.98 4.05	2.28	1.70	0.01				
03020-070	33.003	4.17	3.00	1.17	0.03				
03020-071	13.61	3.90	3.61	0.29	0.02				
03020-072	33.05	3.92	3.05	0.87	0.02				
03020-074	13.38	3.98 4.04	3.38 3.79	0.60	0.01				
03020-076	33.483	4.58	3.48	1.10	0.03				
03020-092A	13.68	4.61	3.68	0.93	-0.01				
03020-092B	14.36	4.66	4.36	0.30	0.00				
03020-168	34.482	4.30 4.72	4.48	-0.18 -1.64	0.00				
03020-262 03020-640	16.36 31.525	3.846	6.36 1.53	2.32	0.00				
03020-642	12.34	3.84	2.34	1.50	0.02				
03020-660	32.305	3.83	2.31	1.53	0.01				
03020-674	34.426	4.30	4.43	-0.13	0.00				
03020-676 03020-678	34.76 34.549	4.34 4.33	4.76 4.55	-0.42 -0.22	0.00				
03020-680	34.199	4.35	4.20	0.15	0.01				
03020-682	33.662	4.34	3.66	0.68	-0.01				
03020-686	16.01	4.30	6.01	-1.71 -0.25	0.00				
03020-692	15.02 33.467	4.77	5.02 3.47	1.26	-0.01				
03020-712	14.57	4.62	4.57	0.05	0.00				
03020-714	14.77	4.64	4.77	-0.13	0.01				
03020-716	14.52	4.64	4.52	0.12	0.01				
03020-720 03020-746	15.14 13.84	4.66	5.14 3.84	-0.48 0.86	0.01				
03020-740	13.67	4.71	3.67	1.04	0.01				
03020-754	33.194	4.70	3.19	1.51	-0.02				
03020-758	13.74	4.70	3.74	0.96	-0.02				
03020-760 03020-762	13.59 32.812	4.70 4.69	3.59 2.81	1.11	0.00 -0.01				
03020-762	33.133	4.09	3.13	1.57	0.00				
03020-912	32.766	3.98	2.77	1.21	0.01				
03020-930	33.48	3.99	3.48	0.51	0.00				
03020-934 03020-937	33.422 14.61	4.27 4.67	3.42 4.61	0.85	0.01				
03020-937	13.79	3.95	3.79	0.06	0.01				
03020-982	16.94	3.54	6.94	-3.40	-0.12				
03999-058	11.74	3.47	1.74	1.73	0.02				
03999-902	14.59	2.94	4.59	-1.65	0.05				
B2.0 B3.0	14.27 15.32	3.67 3.78	4.27 5.32	-0.60 -1.54					
B4.0	17.36	4.02	7.36	-3.34					
B5.0	17.61	4.25	7.61	-3.36					
B6.0	17.4	4.44	7.40	-2.96					
B7.0 B8.0	17.59 17.37	4.54 4.67	7.59 7.37	-3.05 -2.70					
D0.U	1/.5/	4.07	1.37	-2.70	l)				

Project Name: Ocean Park Timmons Group Project No. 50568 Date: 04/07/2025 Calculated By: KB

Check Storm Analysis - 100 YR

100-Year Storm										
Original Existing Model										
Storage Nodes										
Name	Rim Elev. (ft)	REAL HGL (ft)	Rim Elev (ft) Actual	Height above/below Rim						
03020-002B	30.32	4.59	0.32	4.27						
03020-022	16.39	4.59	6.39	-1.80						
03020-027	33.262	4.69	3.26	1.43						
03020-046	32.05	2.73	2.05	0.68						
03020-057	33.181	4.84	3.18	1.66						
03020-086	38.264	5.66	8.26	-2.60						
03020-094	33.266	5.42	3.27	2.15						
03020-264	15.84	5.77	5.84	-0.07						
03020-306	32.172	4.59	2.17	2.42						
03020-310	32.354	4.59	2.35	2.24						
03020-598	35.385	5.61	5.39	0.23						
03020-638	32.617	4.01	2.62	1.39						
03020-644	31.551	4.01	1.55	2.46						
03020-694	33.882	4.65	3.88	0.77						
03020-706	15.08	4.79	5.08	-0.29						
03020-764	32.242	4.99	2.24	2.75						
03020-774	32.248	5.02	2.25	2.77						
03020-914	33.446	3.98	3.45	0.53						
03020-916	34.347	4.03	4.35	-0.32						
03020-938	32.991	5.11	2.99	2.12						
03020-942	35.248	6.01	5.25	0.76						
03040-070	32.62	4.03	2.62	1.41						
03040-108	33.119	4.33	3.12	1.21						
03999-902	13.6	2.00	3.60	-1.60						
J14630	35	4.30	5.00	-0.70						

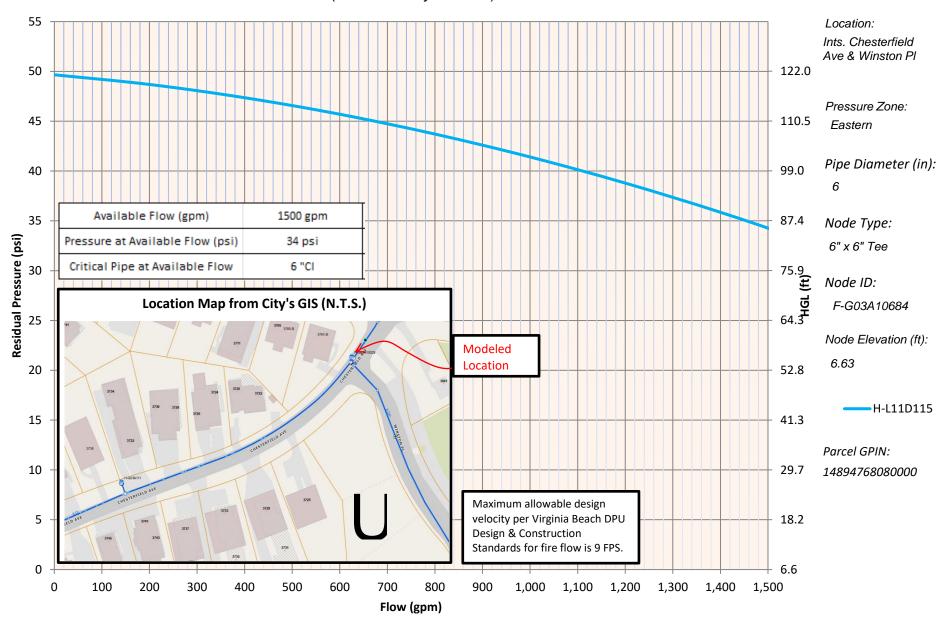
100-Year Storm											
	Revised Existing Model										
Storage Nodes											
Name	Rim Elev. (ft)	REAL HGL (ft)	Rim Elev. (ft) Actual	Height above/below Rim	Change from Existing Conditions						
03000-043	13.8	6.46	3.80	2.66	6.46						
03000-050	15.1	4.59	5.10	-0.51	4.59						
03020-002B	30.32	4.59	0.32	4.27	0.00						
03020-022	16.59	4.33	6.59	-2.26	-0.26						
03020-022A	19 33,262	4.59 4.77	9.00	-4.41	4.59						
03020-027			3.26	1.51	0.08						
03020-046	32.05	3.80	2.05	1.75	1.07						
03020-057	33.181	4.67	3.18	1.49	-0.17						
03020-086	38.264	5.66	8.26	-2.60	0.00						
03020-094	33.266	5.43	3.27	2.16	0.01						
03020-264	15.84	5.77	5.84	-0.07	0.00						
03020-306	32.172	4.62	2.17	2.45	0.03						
03020-310	32.354	4.62	2.35	2.27	0.03						
03020-598	35.385	5.61	5.39	0.23	0.00						
03020-624	15.66	4.63	5.66	-1.03	4.63						
03020-626	15.55	4.63	5.55	-0.92	4.63						
03020-638	32.617	3.8	2.62	1.18	-0.21						
03020-644	31.551	3.8	1.55	2.25	-0.21						
03020-694	33.882	4.76	3.88	0.88	0.11						
03020-706	15.08	4.58	5.08	-0.50	-0.21						
03020-764	32.242	4.67	2.24	2.43	-0.32						
03020-774	32.248	4.67	2.25	2.42	-0.35						
03020-914	33.446	3.94	3.45	0.49	-0.04						
03020-916	34.347	4.04	4.35	-0.31	0.01						
03020-938	32.991	4.67	2.99	1.68	-0.44						
03020-942	35.248	6.08	5.25	0.83	0.07						
03040-070	32.62	4.04	2.62	1.42	0.01						
03040-108	33.119	4.33	3.12	1.21	0.00						
J14630	35	4.3	5.00	-0.70	0.00						

Post Development Model								
	Stor	age Nodes						
Name	Rim Elev. (ft)	REAL HGL (ft)	Rim Elev. (ft) Actual	Height above/below Rim	Change from Revised Existing Conditions			
03000-043	13.8	6.44	3.80	2.64	-0.02			
03000-050	15.1	4.57	5.10	-0.53	-0.02			
03020-002B	30.32	4.57	0.32	4.25	-0.02			
03020-022	16.59	4.13	6.59	-2.46	-0.20			
03020-027	33.262	4.78	3.26	1.52	0.01			
03020-027	32.05	3.82	2.05	1.77	0.01			
03020-057	33.181	4.68	3.18	1.50	0.02			
03020-086	38.264	5.66	8.26	-2.60	0.00			
03020-080	33.266	5.43	3.27	2.16	0.00			
03020-054	15.84	5.77	5.84	-0.07	0.00			
03020-306	32.172	4.64	2.17	2.47	0.02			
03020-310	32.354	4.64	2.35	2.29	0.02			
03020-598	35.385	5.61	5.39	0.23	0.00			
03020-624	15.66	4.64	5.66	-1.02	0.01			
03020-626	15.55	4.64	5.55	-0.91	0.01			
03020-638	32.617	3.83	2.62	1.21	0.03			
03020-644	31.551	3.83	1.55	2.28	0.03			
03020-694	33.882	4.76	3.88	0.88	0.00			
03020-706	15.08	4.59	5.08	-0.49	0.01			
03020-764	32.242	4.68	2.24	2.44	0.01			
03020-774	32.248	4.68	2.25	2.43	0.01			
03020-914	33.446	3.95	3.45	0.50	0.01			
03020-916	34.347	4.04	4.35	-0.31	0.00			
03020-938	32.991	4.68	2.99	1.69	0.01			
03020-942	35.248	6.08	5.25	0.83	0.00			
03040-070	32.62	4.04	2.62	1.42	0.00			
03040-108	33.119	4.33	3.12	1.21	0.00			
J14630	35	4.3	5.00	-0.70	0.00			
Pump_Station	13.8	2.79	3.80	-1.01	0.07			
A1.0	17.17	5.24	7.17	-1.93				
A1.1	17.17	5.38	7.17	-1.79				
A2.0	17.19	5.26	7.19	-1.93				
A2.1	17.19	5.31	7.19	-1.88				
A2.2	16	5.27	6.00	-0.73				
A3.0	17.18	5	7.18	-2.18				
A3.1	17.18	5.01	7.18	-2.17				
A3.2	15.1	4.72	5.10	-0.38				
B1.0	13.46	3.46	3.46	0.00				
B4.1	12.4	4.26	2.40	1.86				
B5.1	17.27	4.24	7.27	-3.03				
B5.2	13.3	4.26	3.30	0.96				
B6.1	17.08	4.45	7.08	-2.63				
B6.2	13.95	4.48	3.95	0.53				
B7.1	17.25	4.57	7.25	-2.68				
B7.2 B8.1	14.01	4.61 4.72	4.01 7.31	0.60 -2.59				
	17.31							
B8.2	15.36	4.8	4.01	0.79				

Pump Station Comparison Table Updated 2025/04/07

Pump Station (Utilization %)										
		Revised Existing	5	Post-Development						
Pump ID	2-YR %	10-YR %	100-YR %	2-YR %	10-YR %	100-YR %				
OP_PS2_P1	89.44	89.46	88.66	88.92	88.97	88.70				
OP_PS2_P2	86.04	86.25	80.00	82.08	82.35	80.04				
OP_PS2_P3	80.71	81.17	57.89	68.44	69.25	57.80				
Pump Average	85.40	85.63	75.52	79.81	80.19	75.51				

Pump Station (Total Volume)									
		Revised Existing	5	Post-Development					
Pump ID	2-YR (MG)	10-YR (MG)	100-YR (MG)	2-YR (MG)	10-YR (MG)	100-YR (MG)			
OP_PS2_P1	12.524	12.526	12.415	12.452	12.458	12.420			
OP_PS2_P2	82.478	82.681	76.690	78.684	78.944	76.727			
OP_PS2_P3	77.374	77.809	55.491	65.605	66.388	55.414			
Pump Combined	172.376	173.016	144.596	156.741	157.79	144.561			


Ocean Park Subdivision Virginia Beach, VA Project Narrative and Calculations Timmons Project Number: 50568 July 3, 2025

Appendix D – Utility Calculations

City of Virginia Beach Water Distribution System

Modeled Capacity Curve at Peak Hour (With Max. Day Demand)

City of Virginia Beach

VBgov.com

MUNICIPAL CENTER BUILDING #21 2408 COURTHOUSE DRIVE VIRGINIA BEACH, VA 23456

VIRGINIA BEACH FIRE PREVENTION BUREAU (757) 385-4228 OFFICE (757) 385-5676 FAX

Fire Flow Worksheet

This needed fire-flow calculation worksheet is based on the Virginia Statewide Fire Prevention Code, Appendix B Fire-Flow Requirements for Buildings. For all inquiries, please consult with a fire plan examiner. Fill in the information as it applies to the proposed project.

Date	DSC File #
Project Name	
Certified Engineer	Phone #
Address or Parcel #	

Fire Protection Water Demand Computations

Fire-Flow Calculation Area: The fire-flow calculation area shall be the total floor area of all floors within the exterior walls and under the horizontal projections of the roof of a building.

Area Separation: Portions of buildings which are separated by fire walls **without openings** (even if openings are firerated), constructed in accordance to the Virginia Construction Code, are allowed to be considered as separate fire-flow areas.

Construction Type IA & IB: The fire-flow calculation area of buildings constructed of Type IA and Type IB construction shall be the area of the three largest successive floors. **Exception:** Fire-flow calculation area for open parking garages shall be determined by the area of the largest floor.

Section I – Fire–Flow Demand for One- & Two-Family Dwellings, Group R-3, R-4, and Townhouses

Note: Per the technical code change in the 2015 Virginia Statewide Fire Prevention Code, §507.5.1, fire hydrant requirements do not apply to in-fill development of fewer than 5 detached single-family dwellings constructed in existing developments & for the reconstruction or rehabilitation of detached single-family dwellings.

Fire-Flow Calculation Area (square feet)	Minimum Fire-Flow (gallons per minute)		Flow Duration (hours)		
0 -3,600	No sprinklers: 1,000	Sprinklers: 500	No sprinklers: 1	Sprinklers: 1/2	
2.601 and amastau*	No sprinklers: value in Table B105.1 (2)		No sprinklers: duration in Table B105.1 (2)		
3,601 and greater*	Sprinklers: ½ value in Table B105.1 (2)		Sprinklers: 1 hour	1 hour	

Allowances for one- & two-family dwellings installed with an automatic fire sprinkler system per NFPA 13D:

- 1. <3,600 sf: minimum fire-flow & flow duration are permitted to be reduced by 50%.
- 2. *3,601 > sf: minimum fire-flow permitted to be 50% of the values in Table B105.1 (2) & flow duration is 1 hour.

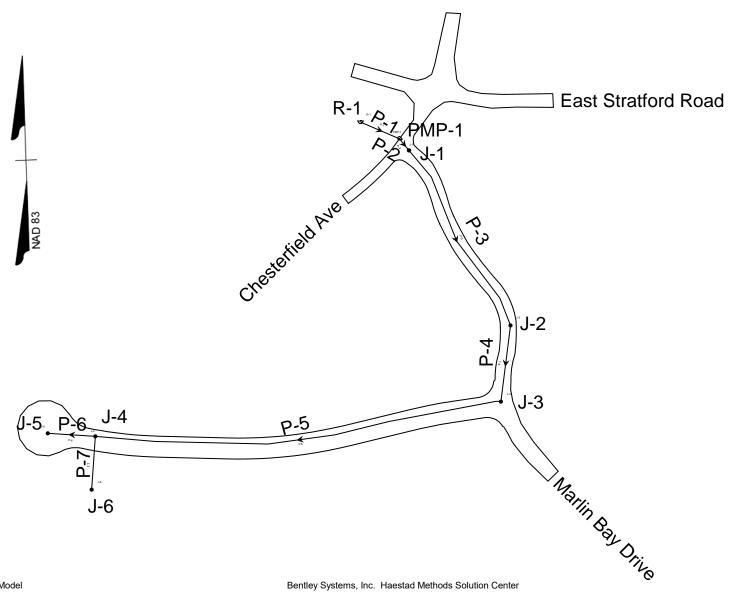
Section II – Fire-Flow Demand for Other than One- & Two-Family Dwellings, Group R-3, R-4, & Townhouses. Includes Commercial and Multi-Family Developments - Use Table B105.1(2) Structural information must be provided from the Virginia Construction Code										
Occupancy classification		Cons	truction type		Square footage		# of st	ories		
A. Fire-flow value from Table B105.1 (2) gpm Flow duration in hours										
The next two fields are for	when the pr	opose	ed building wi	ll be installe	ed with a fire sp	orinkler syst	em thro	oughour	t.	
B. Reduction for sprinklers	s: Enter 25%	of th	e value from f	field A.						
• NFPA 13 system:	the reduced	fire-f	low cannot be	less than 1,	000 gpm.					
 NFPA 13R system 	: the reduce	d fire	-flow cannot b	e less than	1500 gpm.				gpm	
C. Enter fire sprinkler system demand plus hose stream allowance, per NFPA 13.										
Note: The water supply shademand including the hose demand.										

Section III – Comparison of Fire Protection Water Demand vs Available Water Supply Data If the supply is greater than the demand, then meets criteria for approval. If the supply is less than the sup					
demand, then other alternatives may be approved by the Fire Marshal					
Site fire protection water demand - enter the value from applicable Section I or Section II, either A (where no sprinklers are used), or the higher value of either B or C .					
Justification of available water supply—enter the value from the hydraulic analysis report.					

IFC APPENDIX B TABLE B105.1 (2) MINIMUM FIRE-FLOW AND FLOW DURATION

	FIRE-FLOW CA	FIRE-FLOW	FLOW			
Type IA & IB	Type IIA & IIIA	Type IV & V-A	Type IIB & IIIB	Type V-B	(gallons per minute)	DURATION (hours)
0-22,700	0-12,700	0-8,200	0-5,900	0-3,600	1,500	
22,701-30,200	12,701-17,000	8,201-10,900	5,901-7,900	3,601-4,800	1,750	
30,201-38,700	17,001-21,800	10,901-12,900	7,901-9,800	4,801-6,200	2,000	2
38,701,48,300	21,801-24,200	12,901-17,400	9,801-12,600	6,201-7,700	2,250	2
48,301-59,000	24,201-33,200	17,401-21,300	12,601-15,400	7,701-9,400	2,500	
59,001-70,900	33,201-39,700	21,301-25,500	15,401-18,400	9,401-11,300	2,750	
70,901-83,700	39,701-47,100	25,501-30,100	18,401-21,800	11,301-13,400	3,000	
83,701-97,700	47,101-54,900	30,101-35,200	21,801-25,900	13,401-15,600	3,250	2
97,701-112,700	54,901-63,400	35,201-40,600	25,901-29,300	15,601-18,000	3,500	3
112,701-128,700	63,401-72,400	40,601-46,400	29,301-33,500	18,001-20,600	3,750	
128,701-145,900	72,401-82,100	46,401-52,500	33,501-37,900	20,601-23,300	4,000	
145,901-164,200	82,101-92,400	52,501-59,100	37,901-42,700	23,301-26,300	4,250	
164,201-183,400	92,401-103,100	59,101-66,000	42,701-47,700	26,301-29,300	4,500	
183,401-203,700	103,101-114,600	66,001-73,300	47,701-53,000	29,301-32,600	4,750	
203,701-225,200	114,601-126,700	73,301-81,100	53,001-58,600	32,601-36,000	5,000	
225,201-247,700	126,701-139,400	81,101-89,200	58,601-65,400	36,001-39,600	5,250	
247,701-271,200	139,401-152,600	89,201-97,700	65,401-70,600	39,601-43,400	5,500	
271,201-295,900	152,601-166,500	97,701-106,500	70,601-77,000	43,401-47,400	5,750	
295,901-Greater	166,501-Greater	106,501-115,800	77,001-83,700	47,401-51,500	6,000	4
-	-	115,801-125,500	83,701-90,600	51,501-55,700	6,250	
-	-	125,501-135,500	90,601-97,900	55,701-60,200	6,500	
-	-	135,501-145,800	97,901-106,800	60,201-64,800	6,750	
-	-	145,801-156,700	106,801-113,200	64,801-69,600	7,000	
-	-	156,701-167,900	113,201-121,300	69,601-74,600	7,250	
-	-	167,901-179,400	121,301-129,600	74,601-79,800	7,500	
-	-	179,401-191,400	129,601-138,300	79,801-85,100	7,750	
-	-	191,401-Greater	138,301-Greater	85,101-Greater	8,000	

Types of construction are based on the Virginia Construction Code. Fire-Flow measured at 20 psi residual pressure


Ocean Park Residential Water Demands Project # 50568 Date: 03-19-2025					mand	pu	and	emand Factor	land			with Max Day Demand
AREA Units Der Node			Flow of De	Flow of De	Ave. Dema	Ave. Dem	Мах Day D	Мах. Den	Peak Hour	Fire Flow	Fire Flow	
				(HOURS)	(GPD/UNIT)	(GPD)	(GPM)		(GPM)	(GPM)	(GPM)	GPM
Proposed Development												
14 Duplexes	- Per D	Ouplex	14	24.0	450.0	6300.0	4.4	1.4	6.1	23.0	1500.0	1506.1

Assumptions & Calculations (City of Virginia Beach 2024 Public Utilities Design Standards Manual)

8.3.B Domestic Demand

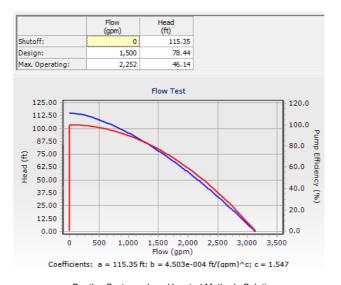
- 1. Average day demand for residential units shall be 225 gallons/unit/day.
- 2. Residential peak hour demand (Q) shall be calculated by Q=11.4N^0.544, where N is the number of dwelling units.
- 3. Peak hour demand for commercial sites shall be calculated by AWWA Manual, M22, "Sizing Water Service Lines and Meters.
- 4. Max day demand for commercial and residential uses shall be equal to 1.4 times the average day demand.

Ocean Park Water Model

Scenario: Average Day

Junction Table - Time: 0.00 hours

Label	Elevation (ft)	Demand (gpm)	Hydraulic Grade (ft)	Pressure Head (ft)	Pressure (psi)
J-1	0.00	0	116.35	116.35	50
J-2	0.00	0	116.35	116.35	50
J-3	0.00	0	116.35	116.35	50
J-4	0.00	0	116.34	116.34	50
J-5	0.00	4	116.34	116.34	50
J-6	0.00	0	116.34	116.34	50


Pipe Table - Time: 0.00 hours

Label	Length (ft)	Start Node	Stop Node	Diameter (in)	Hazen-Williams C	Flow (gpm)	Velocity (ft/s)	Minor Loss Coefficient (Unified)
P-1	1	R-1	PMP-1	72.0	150.0	4	0.00	0.000
P-2	23	PMP-1	J-1	6.0	120.0	4	0.05	0.350
P-3	280	J-1	J-2	8.0	120.0	4	0.03	1.310
P-4	108	J-2	J-3	8.0	120.0	4	0.03	0.740
P-5	594	J-3	J-4	8.0	120.0	4	0.03	1.720
P-6	13	J-4	J-5	8.0	120.0	4	0.03	0.350
P-7	25	J-4	J-6	6.0	120.0	0	0.00	1.280

Reservoir Table - Time: 0.00 hours

Label	Elevation (ft)	Hydraulic Grade (ft)	Flow (In net) (gpm)	Flow (Out net) (gpm)
R-1	1.00	1.00	-4	4

Label	Elevation (ft)	Pump Definition	Status (Initial)	Hydraulic Grade (Suction) (ft)	Hydraulic Grade (Discharge) (ft)	Flow (Total) (gpm)	Pump Head (ft)
PMP-1	0.00	Flow Test	On	1.00	116.35	4	115.35

Scenario: Maximum Day

Junction Table - Time: 0.00 hours

Label	Elevation (ft)	Demand (gpm)	Hydraulic Grade (ft)	Pressure Head (ft)	Pressure (psi)
J-1	0.00	0	116.34	116.34	50
J-2	0.00	0	116.34	116.34	50
J-3	0.00	0	116.34	116.34	50
J-4	0.00	0	116.34	116.34	50
J-5	0.00	6	116.34	116.34	50
J-6	0.00	0	116.34	116.34	50

Pipe Table - Time: 0.00 hours

Label	Length (ft)	Start Node	Stop Node	Diameter (in)	Hazen-Williams C	Flow (gpm)	Velocity (ft/s)	Minor Loss Coefficient (Unified)
P-1	1	R-1	PMP-1	72.0	150.0	6	0.00	0.000
P-2	23	PMP-1	J-1	6.0	120.0	6	0.07	0.350
P-3	280	J-1	J-2	8.0	120.0	6	0.04	1.310
P-4	108	J-2	J-3	8.0	120.0	6	0.04	0.740
P-5	594	J-3	J-4	8.0	120.0	6	0.04	1.720
P-6	13	J-4	J-5	8.0	120.0	6	0.04	0.350
P-7	25	J-4	J-6	6.0	120.0	0	0.00	1.280

Reservoir Table - Time: 0.00 hours

Label	Elevation (ft)	Hydraulic Grade (ft)	Flow (In net) (gpm)	Flow (Out net) (gpm)
R-1	1.00	1.00	-6	6

Label	Elevation (ft)	Pump Definition	Status (Initial)	Hydraulic Grade (Suction) (ft)	Hydraulic Grade (Discharge) (ft)	Flow (Total) (gpm)	Pump Head (ft)
PMP-1	0.00	Flow Test	On	1.00	116.34	6	115.34

Scenario: Maximum Day w/ Fire

Junction Table - Time: 0.00 hours

Label	Elevation (ft)	Demand (gpm)	Hydraulic Grade (ft)	Pressure Head (ft)	Pressure (psi)
J-1	0.00	0	93.74	93.74	41
J-2	0.00	0	86.91	86.91	38
J-3	0.00	0	84.11	84.11	36
J-4	0.00	0	70.29	70.29	30
J-5	0.00	6	70.29	70.29	30
J-6	0.00	1,000	65.59	65.59	28

Pipe Table - Time: 0.00 hours

Label	Length (ft)	Start Node	Stop Node	Diameter (in)	Hazen-Williams C	Flow (gpm)	Velocity (ft/s)	Minor Loss Coefficient (Unified)
P-1	1	R-1	PMP-1	72.0	150.0	1,006	0.08	0.000
P-2	23	PMP-1	J-1	6.0	120.0	1,006	11.42	0.350
P-3	280	J-1	J-2	8.0	120.0	1,006	6.42	1.310
P-4	108	J-2	J-3	8.0	120.0	1,006	6.42	0.740
P-5	594	J-3	J-4	8.0	120.0	1,006	6.42	1.720
P-6	13	J-4	J-5	8.0	120.0	6	0.04	0.350
P-7	25	J-4	J-6	6.0	120.0	1,000	11.35	1.280

Reservoir Table - Time: 0.00 hours

Label	Elevation (ft)	Hydraulic Grade (ft)	Flow (In net) (gpm)	Flow (Out net) (gpm)
R-1	1.00	1.00	-1,006	1,006

Label	Elevation (ft)	Pump Definition	Status (Initial)	Hydraulic Grade (Suction) (ft)	Hydraulic Grade (Discharge) (ft)	Flow (Total) (gpm)	Pump Head (ft)
PMP-1	0.00	Flow Test	On	1.00	96.45	1,006	95.45

Scenario: Peak Hour

Junction Table - Time: 0.00 hours

Label	Elevation (ft)	Demand (gpm)	Hydraulic Grade (ft)	Pressure Head (ft)	Pressure (psi)
J-1	0.00	0	116.29	116.29	50
J-2	0.00	0	116.28	116.28	50
J-3	0.00	0	116.28	116.28	50
J-4	0.00	0	116.27	116.27	50
J-5	0.00	23	116.27	116.27	50
J-6	0.00	0	116.27	116.27	50

Pipe Table - Time: 0.00 hours

Label	Length (ft)	Start Node	Stop Node	Diameter (in)	Hazen-Williams C	Flow (gpm)	Velocity (ft/s)	Minor Loss Coefficient (Unified)
P-1	1	R-1	PMP-1	72.0	150.0	23	0.00	0.000
P-2	23	PMP-1	J-1	6.0	120.0	23	0.26	0.350
P-3	280	J-1	J-2	8.0	120.0	23	0.15	1.310
P-4	108	J-2	J-3	8.0	120.0	23	0.15	0.740
P-5	594	J-3	J-4	8.0	120.0	23	0.15	1.720
P-6	13	J-4	J-5	8.0	120.0	23	0.15	0.350
P-7	25	J-4	J-6	6.0	120.0	0	0.00	1.280

Reservoir Table - Time: 0.00 hours

Label	Elevation (ft)	Hydraulic Grade (ft)	Flow (In net) (gpm)	Flow (Out net) (gpm)
R-1	1.00	1.00	-23	23

Label	Elevation (ft)	Pump Definition	Status (Initial)	Hydraulic Grade (Suction) (ft)	Hydraulic Grade (Discharge) (ft)	Flow (Total) (gpm)	Pump Head (ft)
PMP-1	0.00	Flow Test	On	1.00	116.29	23	115.29

HRSD Small Communities Sanitary Sewer Flow Calculations Worksheet

Applicants with projects generating sanitary sewer flow must use this worksheet to calculate flows and submit to HRSD Development Services using the email link: developrequest@hrsd.com

Project Name: 50568 - Ocean Park

Grand '

Pump Station Replacement - Upgrade - Modification projects

HRSD shall certify a pump station based on metered data if available. In absence of metered data, water consumption data shall be used instead. If there is a future flow component in the calculations for the catchment, please use the worksheet below.

	PS No:	N/A			
a, water	PS Name:				
or the			Pump Station Ca	tchment Basin	
		Avg. Dry We	ather Flow	Wet Weath	ner Flow
		gpd	gpm	gpd	gpm
	Enter				
N	Netered ->		0.00		0.00
OR Water Consumption	r Flow		0.00	0	0.00
	Sub-totals:	0	0.00	0	0.00

Proposed Development

Please use the table below to calculate sanitary sewer flows for your project

Land Use	Contributing Unit Type	Flow (gpd/Unit)	Flow Duration (hours)	Peak Factor
Residential			, ,	
Single Family Homes, Trailers, Apartments, Condos,	Residential	210	2.4	2.5
Townhomes, Duplexes	Dwelling	310	24	2.5
Medical Facilities				
Hospitals	Medical Bed	300	24	3
Nursing Homes & Assisted Living	Medical Bed	160	24	3
Funeral Homes	Gross SF	0.25	12	3
Medical Office Building	Gross SF	0.25	12	3
Tourism Facilities				
Motels & Hotels	Room	130	24	3
Educational Facilities				
High School (w/ showers)		15	8	3
Elementary & Middle School	Student /	10	8	3
College/University Campus & Day Care	Faculty	10	12	3
Boarding Schools		75	16	3
Recreational Facilities				
Picnic Areas, Parks & Amusement Parks	Person	5	12	3
Movie Theater	Cook	2.5	12	3
Religious Assembly	Seat	2.5	6	3
Campground / Cabins	Camping site	100	24	3
Dining /Eatery Facilities				
Restaurants	Seat	30	16	3
Service & Retail Facilities				
Shopping Mall & Retail Shops		0.2	12	3
Convenient Store		0.3	24	3
Office Building, Storage Units Office	Gross SF	0.1	12	3
Fitness Center		0.1	16	3
Service Stations		0.4	16	3
Laundromats	Machine	500	16	3
Industrial Facilities				
Heavy Industrial		0.35	16	3
Light Industrial	Gross SF	0.1	16	3
Warehouse		0.05	24	3

Enter No. of Units	Avg. Flow (gpd)	Avg. Flow (gpm)	Peak Flow (gpd)	Peak Flow (gpm)
28	8,680	6.03	21,700	15.07
	0	0.00	0	0.00
	0	0.00	0	0.00
	0	0.00	0	0.00
	0	0.00	0	0.00
	0	0.00	0	0.00
	0	0.00	0	0.00
	0	0.00	0	0.00
	0	0.00	0	0.00
	0	0.00	0	0.00
	0	0.00	0	0.00
	0	0.00	0	0.0
	0	0.00	0	0.0
	0	0.00	0	0.0
	0	0.00	0	0.0
	0	0.00		0.0
	0	0.00	0	0.00
	0	0.00	0	0.00
	0	0.00	0	0.0
	0	0.00	0	0.00
	0	0.00	0	0.0
	0	0.00	0	0.0
	0	0.00	0	0.0
	0	0.00	0	0.0
Sub-Totals:	8,680	6.03	21,700	15.07

Future Growth Flow Calculations

(gpd/Unit) based on best engineering practices.

Land use	Contributing Unit Type	Enter Flow (gpd/Unit)	Flow Duration (hrs)	Peak Factor
Residential				
Single Family Homes, Trailers, Apartments, Condos,	Residential	310	24	2.5
Townhomes, Duplexes	Dwelling	310	24	2.3
Commercial				
Medical, Tourism, Educational, Recreational, Dining,	Acros	1 000 00	24	2
Service & Retail Facilities	Acres 1,000.00	24	3	
Industrial				
Heavy & Light Industrial, Manufacturing, Warehouses	Acres	1,000.00	24	3
,		,	- '	

Enter No. of Units	Avg. Flow (gpd)	Avg. Flow (gpm)	Peak Flow (gpd)	Peak Flow (gpm)
	0	0.00	0	0.00
	0	0.00	0	0.00
	0	0.00	0	0.00
Sub-totals:	0	0	0	0

NOTE: Enter the number of units as indicated in the appropriate land use to calculate project design flows. Under the Future Growth Flow Calculations section, you may edit the default values for the flow factor

	Totals:	8,680	6.03	21,700	15.07
--	---------	-------	------	--------	-------

Comments:

This project proposes the development of a new residential subdivision on Marlin Bay drive.

Applicant's Name:	
Phone No:	(757) 905-5484
Email:	kyle.brady@timmons.com

Ocean Park Subdivision Proposed Flows

Flow Calculations - City of Virginia Beach

Discharge Facility		Flow gpd	Flow duration (hr)	Peak Factor	No. of Units	Average Flow (gpm)	Average Flow (gpd)	Peak Flow (gpd)	Peak Flow (gpm)
Dwelling	per dwelling	310	24	2.5	28	6.03	8,680	21,700	15.07
TOTAL DAILY FLOW (gpd)									8,680
		TOTAL A	VERAGE FLO	W (gpm)					6.03
		TOTAL PEAK FLOW (gpd)							21,700
		TOTAL P	EAK FLOW (g	jpm)					15.07

Ocean Park Subdivision Proposed Flows

Flow Calculations - VDH

l low calculations - VBH									
Discharge Facility		Flow gpd	Flow duration (hr)	Peak Factor	No. of Units	Average Flow (gpm)	Average Flow (gpd)	Peak Flow (gpd)	Peak Flow (gpm)
Dwellings	per dwelling	400	24	2.5	28	7.78	11,200	28,000	19.44
	TOTAL DAILY FLOW (gpd)							11,200	
		TOTAL AVERAGE FLOW (gpm) TOTAL PEAK FLOW (gpd)						7.78 28,000	
		TOTAL PEAK FLOW (gpm)						19.44	

Ocean Park Subdivision Virginia Beach, VA Project Narrative and Calculations Timmons Project Number: 50568 July 3, 2025

Appendix E – Pavement Design

PAVEMENT DESIGN Vaswani Method PROJECT: Ocean Park Subdivision JOB# 50568 LOCATION: Virginia Beach, VA **DESIGNED BY:** KΒ PAVEMENT: Marlin Bay Drive 04/09/25 DATE: ADT/Unit No. of Units Total TRAFFIC ANALYSIS SUBGRADE ANALYSIS 1. CBR Values = 1. Present ADT (Veh. Per Day) = 168 30.0 5% 2. % of Trucks (HCV) = 3. Equivalent ADT (Veh. Per Day) = 168 2. Enter No. of Tests = 1 *Note: Minimum CBR values of 9 is required for subgrade support. Since CBR values of 9 30.00 * 3. Average CBR = 4. Design Period Years 30 cannot be achieved for this 0.1% 4. Design CBR = 20.00 % Growth project, unsuitable material shall be undercut and replaced with up to 18 inches of sand per the 5. Growth Factor = 1.03 5. Soil Resiliency Factor = 2.00 addendum to the geotechnical report from ETS, Inc. dated 6. Design ADT (Veh. Per Day) = 6. Soil Support Value = 30.00 173 PAVEMENT DESIGN 1. Thickness Index Required = 6.47 inches 2. Design Thickness Equivalency Material Value (a) Thickness Index % Asphalt SM-9.0A 1.67 1.5 2.5 0.14 IM-19.0 A 1.67 0.0 0.00 BM-25.0 3.0 1.67 5.0 0.29 Aggregate 0.60 6.0 3.6 Select Material 0.50 0.0 **TOTAL** 10.5 11.1 0.43 3. Thickness Index Provided = inches > or = Required Thickness Index of 6.5 inches 11.1 > or = 30 % Asphalt : Total Ratio OK!